#WWEM14 “better, bigger, busier!”

21/11/2014
It is harder than ever to prize people away from their desks and laboratories these days, so it is all the more gratifying that WWEM continues to grow, with this year’s event attracting 15% more visitors than WWEM 2012 – that’s consistent growth with every event since the first in 2005.

Running over 2 days in early November, WWEM 2014 was an outstanding success, with sustained growth in every event since the first WWEM in 2005. “In comparison with the last WWEM in 2012, visitor numbers were up by 15% and even though the size of the exhibition was increased by 12% we were still unable to accommodate several potential exhibitors,” reports organiser Marcus Pattison.

WWEM2014WWEM 2014 focused on Water, Wastewater and Environmental Monitoring, and is comprised of a wide range of activities that are designed to update and inform anyone in the water sector with a professional interest in testing and monitoring. “WWEM 2014 was different,” explains Marcus Pattison, “previous WWEM events have included Conferences, Workshops and an Exhibition, but this year’s show also included a number of specialist forums, seminars and a demonstration area, and I believe that this is the major reason for the event’s continued growth. 30% of the exhibitors were so pleased that they re-booked during the show and it is clear that there will be an influx of new exhibitors from those companies that visited WWEM 2014 as delegates.”

Conference: ‘Regulation Updates for Process Operators’
The first day’s conference provided delegates with the latest information on the regulations, technologies and methods that are required for testing and monitoring the environmental emissions of regulated processes. This included advice from Rick Gould on how to obtain a good score in the Environment Agency’s Operator Monitoring Assessment (OMA) – a systematic tool for auditing the monitoring provisions required by legislation. Focusing on water quality monitoring, the Agency’s Andrew Chappell outlined many of the challenges faced by those responsible for this task and explained how the MCERTS scheme has underpinned the quality of monitoring. He also provided an update on the development of a CEN standard (BS EN 16479:2014) for automatic samplers and water quality monitoring equipment, and explained that this could be superseded by an ISO standard.

MCERTS is operated on behalf of the Environment Agency by Sira, and the British Accreditation Service (UKAS) accredits Sira to undertake MCERTS product and personnel certification. Sira’s Emily Alexander explained that whilst monitoring technology has advanced considerably, instrument performance has not always improved at the same rate, which underlines the need for independent testing and certification. Andy Godley from WRc then explained the testing procedure for instruments, both in the field and in the laboratory. Emphasising the need for robust traceable test programmes, Andy said: “Test plans should be agreed as early as possible and variations should be discussed as soon as they occur.”

Finally, Nick Richardson from Siris Environmental outlined ‘the Good, the Bad and the Ugly’ of flow monitoring installations. His presentation featured photographs of good installations in addition to a broad selection of those that left room for improvement. The most common errors highlighted were: non-MCERTS compliant design; over-sized or under-sized installations; poorly designed access for maintenance; installations that are difficult to verify or calibrate, and installations at which the wrong system had been deployed (e.g. weir on inlet).

Laboratory Conference: Accreditation, Innovation and Communication
The second day’s Conference was hosted by the BMTA (British Measurement and Testing Association) and was aimed primarily at managers and senior staff in environmental laboratories, but the techniques and quality procedures discussed were also of interest to staff in other types of laboratory. The presentations dealt with the methods of achieving quality and consistency in sampling and in laboratory measurements, and the speakers represented the national accreditation body, UKAS, large water companies and commercial laboratory-based organisations.

Speakers from UKAS explained that all accredited laboratories should participate in proficiency testing where such schemes are available and relevant to their scope of accreditation. They also provided an outline of TPS 47, the UKAS document on Participation in Proficiency Testing Schemes, which describes the evaluation of participant performance against pre-established criteria by means of inter-laboratory comparisons.

Hazel Davidson from Derwentside Environmental Testing Services (DETS) then explained some of the issues relating to good sampling technique and described how lower limits of detection can be achieved by improved techniques, advanced instrumentation and by using larger sample volumes.

Professor Clive Thompson and Paul Gribble from ALcontrol delivered a presentation entitled: ‘Sampling and analysis in relation to the Priority Substances Directive 2012/39/EU’ in which they explained that some of the environmental quality standards limits that have been set are unrealistically low, “almost to homeopathic levels!” they said. Highlighting the enormous cost incurred by testing for extremely low levels of a large number of compounds, the speakers called for more realistic regulations. “Regulators should liaise with analysts when setting limits, and a group of accredited laboratories should be established to work together to develop achievable standards (similar to MCERTS).”

Explaining the advantages of a new mobile sample tracking technology Kyle Norris from the Water Quality Sampling Team at Northumbrian Water, and Sam Goddard from CSols Ltd gave a presentation on ‘Remote Sampler’, a secure mobile data capture system. Each water sampling technician operates remotely with a handheld device linked through a central hub to a Laboratory Information Management System (LIMS). The system improves sample data quality by reducing transcription errors while allowing existing accredited sampling procedures to be followed.

South West Water, in collaboration with the University of Portsmouth and Natural Resources Wales, have developed methods using the Chemcatcher™ passive sampler to monitor for a range of acid herbicides including Mecoprop and MCPA, and the molluscicide Metaldehyde in surface waters. This subject was addressed by Lewis Jones, South West Water’s Future Quality Obligations and R&D Manager, who outlined the development of a Chemcatcher-based sampling method for the monitoring of polar pesticides in water.

In the final presentation, Bob Poole from Thermo Fisher Scientific explained how today’s laboratory software can be applied to deliver a fully automated, efficient and intelligent approach to sample receipt and scheduling, resource management, collecting, processing and acting upon results, and securely managing the vast amounts of data produced.

BMSS Seminar
A further laboratory seminar was organised by the Environmental and Food Analysis Special Interest Group, EFASIG, which is a special interest group of the British Mass Spectrometry Society (BMSS). Entitled ‘The application of chromatography-mass spectrometry to environmental water analysis’ the seminar ran in the afternoon of the first day at WWEM 2014. Nine speakers from academia, commercial laboratories, instrument manufacturers and industrial companies provided short presentations focusing on specific environmental analytical challenges.

Flow Forum and Apprentice Competition
Hosted by Oliver Grievson from the Water Industry Process Automation & Control Group, the morning of the first day saw Instrumentation Apprentices from Anglian Water, Thames Water and Welsh Water gather at the Flow Forum where they were given a variety of scenarios/challenges to complete. They were then sent off into the exhibition to talk to the plethora of suppliers that held the key to their questions.

Oliver Grievson then described the experiences that he had gained from a programme of 80 flow meter installations during 2012. This demonstrated that the main cost was with the installation of flow meters rather than the flow meters themselves. Following this a presentation by Simon Richardson of Siris Environmental demonstrated where installations have typically gone right and wrong. He highlighted the case of a flume at Coltishall Wastewater Treatment Works which was an ‘ideal’ installation, and also cited others where installations were less than ideal.

WWEM2014Eight different suppliers then gave presentations on traditional technologies such as ultrasonic and time of flight flow measurement to the newer technologies involving microwave, laser and radar. The eight presentations covered ultrasonic level, time of flight ultrasonic, Coriolis mass flow measurement, radar non-contact area velocity, radar level, area velocity, laser non-contact area velocity and microwave flow measurement.

An open question session finished off the Flow Forum with an opportunity to discuss the various technologies presented as well as any other burning issues concerning flow measurement. Summing up, host Oliver Grievson offered to set up a permanent flow forum if it was desired by the water industry as a whole.

The Instrumentation Apprentice Competition resumed in the afternoon, with the contestants set tasks by the three sponsors – ABB, Partech and Siemens. The apprentices were asked to: diagnose (pre-arranged) faults in an electro-magnetic flow meter; change the seal on a Turbitech turbidity monitor, and programme an ultra-sonic level meter over a V-notch which had been provided by Siris Environmental. The final task of the competition was the WRc hosted Question & Answer session, at which Andy Godley posed questions that tested both their technical and practical knowledge of instrumentation. The sponsors and supporting organisations then marked and assessed the performance of the teams and the winners were announced at the WWEM 2014 Gala Dinner. The Apprentice Competition was won by the Anglian Water team of Matthew Stephens and Harry Power with the team from Welsh Water, Will Williams and Alexander Smith, coming second. The remaining two teams from Thames Water (Darren Ewer and Kayne Chamber-Blucher) and Anglian Water (Harry Myers and Dominic Prime) shared third place.

Commenting after the event, winner Matthew Stephens explained that his apprenticeship with Anglian Water started with a year at college, followed by three years of block release. “I found the tasks very interesting,” he said. “As a result of my training I found the practical tasks relatively simple, although the technical questions were more challenging. We came to WWEM not really knowing what to expect but it was great to see so much of the industry in one place, and a walk around the exhibition was a good learning experience.”

A separate seminar was also run on PROFIBUS, a fieldbus communication technology, focusing on its application in the water, waste and environmental sectors, and Merck Millipore delivered a special session on the possible ban of the manufacture of COD tube/cell tests.

Smart Water Forum
This session began with a dissemination workshop from UKWIR. The study, which was completed by Jacobs, examined the trends in wastewater instrumentation, process automation & control and described the needs, trends and barriers that the UK water industry faces, including a resistance to the use of instrumentation. Oliver Grievson (Water Industry Process Automation & Control), who hosted the Forum, then gave a presentation on the future of instrumentation and its worth in AMP 6, giving examples of “Smart Solutions” that are available now.

Laurie Reynolds of Aquamatix described the Internet of Things and its place in the Water Industry, and how the way in which instrumentation data is currently captured and processed is set to change from a distributed network to a more dynamic way of working.

James Dunning from Syrinix then explained that in order for Smart Water innovations to be adopted by the industry, an improved financial approach needs to be taken. Providing a case study on pressure transients within the water distribution network, James explained that the cost of instrumentation is far outweighed by the losses that pressure transients can cause.

Tony Halker from Intellitect Water then described the involvement of miniature sensors and sonde technology in the Smart Water4Europe Project. Tony explained that the measurement and visibility of water quality in the potable water distribution network, between the treatment plant and the customer’s tap, is something the industry has sought for decades.

International Exhibition
The core WWEM exhibitors come back time after time, but as the importance of the event continues to grow, new companies from all over the world are drawn in with each show. This year, the exhibition was bigger than ever, featuring over 130 stands representing more than 250 of the world’s leading providers of test and monitoring equipment and related services.

WWEM2014As a specialist event, the aisles of the WWEM exhibition are populated by visitors with a professional interest in testing or monitoring in the water sector, so feedback from the exhibitors was unanimously positive. “Great venue, well organised, well attended, great leads, what more can I say?” said Jeremy Smith from Aquamatic. Nigel Grimsley from OTT Hydrometry agreed: “WWEM 2014 was very good for us – we received some excellent leads and held some very interesting discussions with key players in the water and weather monitoring sectors. Our flow monitoring products, the new HL4 water quality monitoring system and the Pluvio2 raingauge were particularly popular with visitors.”

Emphasising the importance of the event as an opportunity to meet the whole industry, Steve Tuck from PPM said: “WWEM is an ideal opportunity for knowledge transfer and networking amongst the water community.”

From a laboratory equipment supplier’s perspective, Natalie Barton from SEAL Analytical said: “We launched a new discrete analyser at WWEM so we were delighted to meet so many customers and prospects from commercial, utility and research labs.”

Xylem Analytics launched three major new products at the show. Expressing his delight, General Manager Darren Hanson said: “WWEM 2014 was a particularly important event for us, and with a focus on water testing and monitoring almost every WWEM visitor was interested in at least one of the new products. The new YSI ProDSS is the most advanced portable multiparameter instrument that we have ever developed and was the subject of a well-attended workshop, as was the new WTW UV-VIS sensor range. We also took advantage of the demonstration area to explain the advantages of the IQ SENSOR NET wastewater treatment plant monitoring system.”

Over 80 Workshops!
The Workshops ran almost continuously throughout the 2 days and covered an enormous variety of subjects within the overall testing and monitoring theme. These included flow monitoring presentations covering technologies such as laser, ultrasonics, clamp-on, magnetic flow and integrated flow and pressure metering. Water quality workshops covered the measurement of almost every parameter of interest including TOC, turbidity, pH, conductivity, dissolved oxygen, nitrate, trace metals, organic loading and toxicity. These presentations included handheld instruments as well as continuous and remote monitors, and also addressed data collection techniques and data management software.

Many of the process monitoring workshops examined common operational issues such as chemical precipitation in wastewater treatment, flood defence and asset monitoring, real-time sewer and CSO monitoring, and leakage monitoring and management.

Two of the eight workshop rooms were dedicated to gas detection and monitoring and these presentations covered technologies such as PID, NDIR, electrochemical and pyroelectric sensors. Workplace exposure, instrument calibration and the creation and certification of calibration standards were among the themes of these workshops.

Laboratory analysis was a common theme of many workshops. For example, a presentation by CitySprint examined the challenges faced by sample couriers and another looked at AQC charting software. Laboratory accreditation was also addressed in addition to specialist subjects such as the preparation of inorganic standards, complete ion analysis, TOC, COD, total cyanide and toxicity testing. There were presentations on automated pH and turbidity testing in addition to seminars on lab robotics. One of the speakers also provided a comparison between online and laboratory analysis of TOC, ammonia and BOD. With US EPA approval for the ChlordioX™ Plus, Palintest delivered a workshop entitled ’10 things you need to know about the monitoring of total residual oxidants’.

Instrumentation Demonstration Area
This year and for the first time, WWEM included a Supplier Instrumentation Demo area. WRc hosted this area which, over the 2 days, saw 25 companies provide demonstrations of their technology to those attending the exhibition. Everything from sample preparation technology through to toxic gas detection was demonstrated highlighting the breadth of technologies on show.

WWEM2014Leo Carswell, Head of Technology at WRc, comments: “WRc were delighted to be the first host the new ‘Demo Lab’ which has been a huge success and offered delegates the hands-on experience that is often lacking at exhibitions. The high quality of these demonstrations showed the passion and enthusiasm that suppliers have for their technologies.”

British Water & WWEM 2014 Innovation Exchange
Running throughout the first day of WWEM 2014, this event brought together Water Companies, their partners, and representatives from other water-using industries with British Water members and non-members to identify technology needs and explore available and potential solutions. The day included concurrent workshops on Water Monitoring, Wastewater Monitoring, and Environmental Monitoring, led by British Water, Black & Veatch, and J.Murphy & Sons respectively. The participants included Affinity Water, Bristol Water, United Utilities, Yorkshire Water, Dŵr Cymru Welsh Water, Thames Water and many of the industry’s key contractors.

Gala Dinner
Following a black-tie dinner, MCERTS instrument certificates were awarded to ABB, BioTector, Endress+Hauser, GE, HACH LANGE, Krohne, Mobrey, Nivus, Partech, PPM, Pulsar, Siemens, Sirco Controls, Teledyne ISCO and YSI. MCERTS inspector certificates were awarded to Aaron Hiden and Phil Rose from Critical Flow Systems, and to Simon Richardson from SIRIS Environmental Flow Surveys.

Reflecting on the success of WWEM 2014, organiser Marcus Pattison said: “In this internet age it can be difficult to prize people away from their desks and lab benches. However, it is important to remember that there are 3 ways in which people find new opportunities: active searching, opportunity creation and fortuitous discovery. People can actively search on the internet, but they only usually find what they are looking for, whereas visitors to WWEM events are creating opportunity; they are actively seeking and finding information that they need, and they are also creating opportunity for fortuitous discovery – finding something that they weren’t necessarily looking for!

“I hope that every visitor to WWEM found what they were looking for, networked with key industry professionals and returned home tired but content in the knowledge that they had invested their time wisely. I look forward to helping them to do so again at WWEM 2016 on 2nd and 3rd November.”


Three in four across 10 countries fearful Cyber Attacks could damage their country’s economy.

16/11/2014

Three quarters of surveyed adults (75 percent) across 10 countries say they are fearful that cyber hackers are carrying out attacks on major industries and sectors of the economy in their countries, according to the results of a study announced recently by Honeywell Process Solutions.

cyberbugMany survey respondents (36 percent) indicate they do not believe that it is possible to stop all the cyber attacks. A similar proportion (36 percent globally) report they don’t have faith in their country’s ability to keep up with cyber attacks because they feel that governments and organizations are not taking these threats seriously enough, particularly those respondents in India (61 percent), China (48 percent), and Mexico (47 percent).

“Cyber attacks are a clear and present threat to every industry, in every country throughout the world,” said Michael Chertoff, co-founder and executive chairman of the Chertoff Group, and former head of the U.S. Department of Homeland Security. “This threat is real and industries need a proactive and coordinated approach to protect their assets as well as their intellectual property. We have seen a number of attacks to critical industries in areas like the Middle East and the U.S. and these have had major impacts on their operations.”

The British government estimates that cyber security breaches at British energy companies alone cost those companies about 400 million pounds ($664 million) every year. In the United States, the Department of Homeland Security said that more than 40 percent of industrial cyber attacks targeted the energy industry in 2012, the last full year reported.

Methodology
These are findings of a poll conducted by Ipsos Public Affairs Research, September 2- 16, 2014. For the survey, a sample of 5,065 adults across 10 countries was interviewed online. This included approximately 500 interviews in each of Australia, Mexico, Russia, Brazil, China, India, Japan, the United Arab Emirates, Great Britain and the United States. Results are weighted to the general adult population ages 16–64 in each country (or in the U.S. 18–64). A survey with an unweighted probability sample of 5,065 adults and a 100% response rate would have an estimated margin of error of +/- 1.4 percentage point, 19 times out of 20 of what the results would have been had the entire population of adults in the participating countries been polled. Each individual country would have an estimated margin of error of 4.4 percentage points. All sample surveys and polls may be subject to other sources of error, including, but not limited to coverage error, and measurement error.

“These survey results are not surprising in light of the recent cyber attacks that have made headlines in several areas around the world,” said Jeff Zindel, leader of HPS’ Industrial Cyber Security business. “The impacts of these attacks, as well as others that have not been publicly reported, have cost companies and governments billions of dollars through operational issues and loss of intellectual property.”

For more than a decade, HPS has developed and delivered cyber security technology and solutions to industrial customers around the world through its Honeywell Industrial Cyber Security organization. This team has delivered more than 500 industrial cyber security projects integrated with its process automation solutions which are used at sites such as refineries, chemical plants, gas processing units, power plants, mines and mills.

In December 2014, HPS will establish the Honeywell Industrial Cyber Security Lab near Atlanta (GA USA). The lab will expand the company’s research capabilities and will feature a model of a complete process control network which Honeywell cyber security experts will leverage to develop, test and certify industrial cyber security solutions. This lab will help accelerate proprietary research and development of new cyber technologies and solutions to help defend industrial facilities, operations and people.

Among other findings of the survey:

• Four in ten (40 percent) survey respondents are not sure about how well their government or private industrial sectors are able to defend against cyber hackers, including 10 percent who are not at all confident.
• When asked about the vulnerability of nine critical industry sectors (which have varying degrees of computer and internet security systems in place to guard against cyber hackers), majorities of respondents globally see all sectors as being vulnerable to cyber attacks. Industrial sectors likely to be perceived as vulnerable to such attacks include oil and gas production (64 percent), medical/health care/pharmaceuticals (64 percent), power grid (63 percent), chemicals (61 percent) and aerospace/defense (59 percent).
• Those in India (92%) and Japan (89%) are most worried about cyber attacks, whereas Russian adults (53%) express the lowest level of overall concern.
• Among those who are relatively unconcerned about cyber hackers (“not very fearful” or “not at all fearful”), no single factor stands out as a primary justification. Many (31 percent) say that this is because they believe the risk of something major actually happening is really quite low, particularly in Australia (52 percent).

Other reasons for lower levels of concern include:

• Cyber hackers would have already done something big if they actually had these capabilities (25%),
• Computer and Internet security has been able to counter or block almost all of the threats (24%); or,
• Governments and its intelligence and armed forces will not let this happen (24%).


Analysis of motor control centres market.

11/11/2014

The increasing level of industrial automation is fuelling the global demand for motor control centres (MCCs). A MCC is an assembly of motor starters or overload protection devices such as contractors and/or overload relays that are connected by a common power bus bar so as to control several motors. Intelligent MCCs (iMCCs) – with remote diagnostic capabilities as well as features such as loss detection and predictive maintenance – are gaining traction especially in the oil and gas, mining, water and wastewater, and chemicals industries due to its ability to minimise maintenance costs, reduce equipment downtime, and ensure operator safety.

fandsNew analysis from Frost & Sullivan Analysis of the Global Motor Control Centres Market, finds that the market earned revenues of $4.06 billion in 2013 and estimates this to reach €4.13 billion (US$5.12 b) in 2018. The study covers low- and medium-voltage MCC.

While iMCCs are boosting overall market revenues, regular MCCs are witnessing a decline in revenue share due to the standardisation of safety features and performance. This has lessened differences between competitors’ products and resulted in price-based competition. In addition, the preference of end users in Russia, India, China and Southeast Asia for switchgears to control motors and for overload protection in the medium-voltage segment is dampening MCC market growth.

“As the percentage of customers that purchase higher-priced iMCCs is expected to rise in the long term, the fall in MCC revenues will not be a concern much longer,” said Frost & Sullivan Industrial Automation & Process Control Senior Research Analyst Krishna Raman. “With iMCCs set to play an important role in the future of the market, manufacturers have to focus on rolling out these products. Manufacturers must develop iMCCs that can be easily integrated with other communication networks to allow customers to move to an integrated enterprise ecosystem.”

In order to succeed globally, MCC manufacturers should also be able to meet multiple standards such as International Electrotechnical Commission and National Electrical Manufacturers Association. For tier-one companies that have already forayed into new regions, the maintenance of a robust product line and an extensive sales network will be key focus areas.

“Ultimately, high-quality, reliable offerings will help establish a strong brand name globally,” noted Raman. “To achieve this, MCC manufacturers need to possess sound technical skills and a thorough understanding of end-user requirements.”


Byrun, the walking, jumping, hopping robot..

03/11/2014
Towards “10% of John Travolta’s walk, Margot Fonteyn’s dance and Julia Roberts’ smile…”

In movies, robots can walk, talk, and even pretend to be human. Their real-life counterparts are considerably more limited. But this gap is closing, and Engineered Arts is seeking to bring reality closer to fiction.

new_MapleLeg_hop1.jpg_ico500Engineered Art’s current flagship product is RoboThespian, the robotic actor. A full-sized humanoid with a biologically inspired design, RoboThespian is used by research and education centres the world over, to inform, to entertain, and to investigate new developments in robotics. Institutions in over 20 countries, including NASA Kennedy Space Centre (USA), Gazientep Planetarium (Turkey), Questacon Science Centre (Australia), and numerous universities world-wide are using RoboThespian every day. Maplesoft technology was used in the design and modeling of balancing and talking RoboThespian robots. MapleSim, the system-level modeling and simulation platform from Maplesoft was used to design the biologically analogous humanoid robot leg integrating a novel actuator, studying its static and dynamic stability, and building the designed leg to determine strategies for its control. However, RoboThespian, for all his conversational appeal, is largely static. His legs are powered, but he can merely squat and stand in place, never moving from a fixed location.

Enter Byrun, the latest Engineered Arts endeavour. Using MapleSim, Byrun’s designers and engineers have developed a biologically analogous leg design which will give Byrun the ability to walk, run, jump and hop. Byrun will be a new kind of full-scale dynamic humanoid that will take social robotics to the next level. With a faster, stronger, more dexterous upper body, a virtually infinite array of facial features (courtesy of his projective head display), and the same speaking and singing abilities as his predecessor, RoboThespian, Byrun has the potential to revolutionize human-robot interaction.

According to Guillaume Hirohide Sasagawa, an engineer at Engineered Arts, “In Byrun, we want to integrate more human-like dynamics into the mechanical design. Using a human-inspired approach at a hardware level makes walking, running and jumping possible without rigid, robotic-looking motion.” MapleSim assisted in Byrun’s design by allowing engineers to simulate complex, nonlinear, compliant components such as his pneumatic muscles and parallel springs. These are used for safety compliance, shock absorption, energy efficiency, and human like smooth motion curves.

Engineered Arts specializes in unconventional actuation solutions, chosen to best suit the application. Motors are fast and precise, but inefficient and rigid. Pneumatic actuators, on the other hand, are powerful and energy efficient, but difficult to control. The conventional approach in robotics is to use a single actuator for a single joint – Byrun will use a parallel electro-pneumatic design, where multiple actuators control single joint actions. This approach utilizes the best facets of both types of actuation, while compensating for their drawbacks. Conversely, some actuators will generate coupled motion across several axes, to imitate (for example) the organic design of the human shoulder. This makes for more natural-looking motion, but can be potentially difficult to control. Here, once more, Maplesoft comes to the rescue, providing advanced solvers that can tackle the difficult multi-variant control equations used to develop Byrun’s motion algorithms.

By creating virtual prototypes of each design phase in MapleSim, Byrun’s engineers can investigate the feasibility of mechanical solutions without needing to create a laborious series of prototypes. “The software helps us to create the design parameters in a very fast virtual environment,” explained Guillaume. “We are no longer required to rebuild the robot for every design iteration, which saves us significant time and cost, and allows us to explore more radical options. As well, complex kinematics can be easily simplified with the use of Maple – this is a powerful tool as the resources required for the project are considerably reduced.” Byrun’s hardware requires modeling mechanical, electrical, thermal and pneumatic elements – with the help of the simulation tool MapleSim, the component requirements can be largely anticipated in advance.

New Maple Leg!

New Maple Leg!

The team at Engineered Arts Ltd. has also found MapleSim useful for its ability to simplify complex calculations. “MapleSim’s ability to automatically generate complex mathematical models, such as the leg dynamics, is outstanding. Different parameters can be altered at different stages to reduce the complexity of calculations,” Guillaume said. “In the case of Byrun, we were able to dramatically simplify the leg dynamics, making the computations much faster. This is extremely powerful and has real impact on our project timelines and deliverables.”

In addition to designing Byrun’s electro-pneumatic hybrid legs and upper body for fully mobile walking and running, the engineers at Engineered Arts Ltd are also developing a robotic hand with the same principles, creating a compact, highly efficient compliant manipulator. They have designed an elbow joint with unconventional kinematic characteristic in humanoid robotics with electro-pneumatic parallel actuation, and are currently making a full torso-shoulder-arm model in MapleSim. This model will be used for solving forward kinematics, inverse kinematics, end-effecter dynamics and compliance.

Robots like Byrun are setting a new standard for both humanoid and more general robotic design. “To be worth its cost, this robot must perform something never seen before. If it can do just 10% of John Travolta’s walk, Margot Fonteyn’s dance and Julia Roberts’ smile, we have a winner,” William Jackson, Director of Engineered Arts, told the media. “Achieving these goals is a daunting task. We are creating not just an exciting piece of hardware, but one that will make a great development platform for others to build on. When Byrun takes his next step, so shall we.” Maplesoft Engineering Solutions will continue to be part of every step taken by this revolutionary team of robotic engineers.


Securing automation systems – a step by step approach

25/10/2014

Prof. Dr. Frithjof Klasen, the writer of this presentation, is a member of the Managing Board of the PROFIBUS Nutzerorganisation e.V. (PNO), Director of the Institute for Automation & Industrial IT (AIT) at FH Köln, and Director of AIT Solutions GmbH in Gummersbach.

Prof. Dr. Frithjof Klasen

Prof. Dr. Frithjof Klasen

The big problem when it comes to security for automation systems: there are no simple solutions.

A system is only safe if the threats are known. Typical security threats in production include infection by malware, unauthorized use (both intentional and unintentional), manipulation of data, espionage and related know-how loss, and denial of service. The consequences can be loss of production, reduced product quality, and endangerment of humans and machines.

In order to evaluate threats, the properties and possible weak points of devices and systems must be known. After all, a property that is useful from the automation perspective – for example, the ability for a programming device to access a controller without authentication – is seen as a possible weak point from the security perspective. It is necessary to distinguish these weak points in order to assess risks, develop security solutions, and take appropriate measures:

  • Weak points that arise due to incorrect implementation (for example, faulty device behavior).
  • Conceptually planned and accepted properties. These include all features that can also be exploited for attack purposes. An example here would be an integrated web server in an automation device.
  • Weak points that are caused by organizational measures or lack thereof.

Field devices not only contain communication technologies for transmission of process signals (real-time communication) but also standard IT technologies, such as FTP services. In addition, field devices also operate as network infrastructure components (switches) and therefore have services and protocols that are needed for network management and diagnostic purposes. The fact of the matter is that most communication protocols at the field level have no integrated security mechanisms. Devices and data are not authenticated and, consequently, within the scope of a possible attack, systems at the field level can be expanded at will and communications can be imported. Even the transferring of PLC programs often takes place without use of security measures such as user authentication and integrity protection.

There is no panacea

Ideally, users would like to have a tool, certification, or system that promises them long-term security. The difficulty, however, is that such solutions don’t provide lasting security. In order to develop secure systems, users must not only implement technical measures but also conceptual and organizational measures. And everyone will know from their own experience that processes can be implemented in technologies much faster than in the minds of people.

However, conceptual and organizational weak points can be more easily overcome when they are described in guideline documents. For example, PI developed a Security Guideline for PROFINET in 2006 and published a completely revised version of this guideline at the end of 2013. This guideline specifies ideas and concepts on how security solutions can be implemented and which security solutions should be implemented. The subject of risk analysis is covered, for example. This analysis estimates the probability of a damage event and its possible consequences, based on protection goals, weak points, and possible threats. Only on the basis of an analysis of this type can appropriate security measures be derived that are also economically feasible. A series of proven best practices are also given, such as the cell protection concept.

Making devices more secure
Another measure concerns the device security. After all, robust devices are the basis for stable processes and systems. They are a basic prerequisite for security in automation. Weak points due to incorrect implementation can be eliminated only through appropriate quality assurance measures and certifications. In large networks, system availability matters the most. To achieve this, devices must respond reliably to various network load scenarios. In systems with many devices, an unintended elevated broadcast load can occur on the network during commissioning, for example, when the master attempts repeatedly to access all devices even though only a few devices are connected. The available devices must be able to handle this abnormal load. It is difficult for operators to predict such scenarios since the probability of a high data volume is dependent on the system. The reason is that the data traffic is determined by cyclic and acyclic data exchange as well as the event-driven data volume.

With the help of the Security Level 1 Tester developed by PI for certification of PROFINET devices and free-of-charge to member companies, such network load scenarios up to and including denial of service can be simulated already in advance. The field devices are tested under stress conditions to simulate an unpredictable load and, thus, to reduce device failures. Uniform test specifications have been defined for this, which can be systematically applied by the test tool. In addition, various network load-related scenarios have been developed that take into account various frame types and sizes as well as the repetition period and number of frames per unit of time, among other things. The network load-related test is already being required by various end users such as the automotive industry. This test is already integrated in the device certification testing according to the latest PROFINET 2.3 specification and must therefore be passed in order for a device to be certified. Users that purchase such a certified device can rely on having a correspondingly robust device.

By no means are all problems solved
Only those who know their devices can protect them. Still, not all manufacturers provide comprehensive information about the utilized protocols and services and communication properties of their devices. Another problem: in spite of security, users must still be able to handle and operate systems. No maintenance technician wants to be looking for a certification key for a failed device at 2 AM in order to bring a system back online. Future-oriented concepts therefore master the tightrope walk between usability and security.

Securing_Automation_Systems• PI has been dealing with the issue of security for years. For example, one PI Working Group is concentrating continuously on security concepts. A product of this is the PROFINET Security Guideline, which can also be downloaded free of charge by non-members. Moreover, further development of the Security Level 1 Tester is being advanced here. In so doing, it is important to all participants that the described and recommended procedures are sustainable and practicable and ultimately also accepted by users. Only in this way can protection concepts be truly successful.


Failure is not an option!

18/10/2014

ProSoft Technology’s PROFIBUS Modules and Industrial Radios allow critical data to be transmitted from ControlLogix PACs at Flood Defense System.

Failure is not an option when upgrading a flood barrier’s control system. Should a flood barrier malfunction, thousands of homes and businesses could be severely impacted.

Upgrading a flood barrier isn’t a task that can be done overnight. It takes months and months of work. The barrier has to remain available for use throughout the upgrade, making it a considered and careful task. There has to be several fail safe measures and redundancies in place. Whoever said redundancies are a bad thing hasn’t taken a look at a flood barrier system.

dartford_scheme

Two concrete towers stand 20 meters above the ground on either side of the mouth of Dartford Creek. This is the UK Environment Agency’s Dartford Barrier Flood Defense System in Kent, South East England. The barrier is routinely closed, in conjunction with the bigger Thames Barrier upstream, to prevent high tide water levels in the River Thames Estuary flowing back up the creek and flooding Dartford and the surrounding area.

Two steel gates, each 30-metre across and weighing over 160 tons each, are suspended at high level between the two concrete towers. Like a huge guillotine at the creek mouth, one gate may be slowly lowered on its supporting chains onto the river bed to block the flow of water. Then the second gate may be slowly lowered to rest onto the top of the first gate. When closed together, the 160 ton steel gates can withstand up to 10.4 meters of water.

The gates are raised and lowered by direct drive oil hydraulic motors. The drive system comprises two 18.5kW pump and motor units, providing both duty and standby facilities, enabling a gate to be raised or lowered in 15-minutes. When not in use both gate structures are safely held in the fully raised position and latched using hydraulic latch mechanisms. This permits vessels to pass underneath the gates along the creek.

It is envisaged that due to climate change that the barrier may need to operate an average of 50 times per annum over the next 25 years.

“The system has to be highly available with many fallback systems in case of failures,” said Andrew Garwood, a Senior Contracts Manager in the Controls Division of Qualter Hall & Co Limited, Barnsley (GB).

Just a couple of years ago, the control system was starting to show its age. As part of a large upgrade to the barrier, its associated control system was overhauled. The original control system was a completely hardwired based relay system that was over 30 years old. Spare parts for the 30 year-old system were becoming scarce.

Qualter Hall provided the M&E contracted works on behalf of the principal contractor Birse Civils, who had engaged Qualter Hall as the Systems Integrator for the project and as the Mechanical and Electrical Engineering Contractor in charge of upgrading the control system; they had several goals in mind. Number one was safety and reliability. Flooding, should it occur, could cause extensive damage to the surrounding area.

instrument_inst_DartfordQualter Hall, who provides an attractive ‘one stop shop’ for a multitude of engineering solutions, decided to call ProSoft Technology. Qualter Hall selected this company, because it was a reliable, cost effective solution that was endorsed by Rockwell Automation. ProSoft Technology is a Rockwell Automation Encompass Partner.

Two Rockwell Automation ControlLogix redundant PACs are inside each of the 20-meter towers to control the opening and closing of the barrier, but much of the equipment the control system spoke to was PROFIBUS or Siemens based. Two PROFIBUS Master communication module (MVI56-PDPMV1) from ProSoft Technology were installed inside the ControlLogix PACs to facilitate communication from the Rockwell Automation processors.

“The ProSoft Technology modules were utilized to provide PROFIBUS DP into the ControlLogix rack and permitted four separate PROFIBUS DP segments for redundant operation,” Andrew Garwood said.
Fiber optic cables were installed between the two towers, as part of the control system overhaul. While the cable links were being constructed, ProSoft Technology 802.11 Industrial Hotspot radios served as the communication link.

“The wireless link was then used as an automatic fallback connection should fiber optic connection be lost. The ProSoft Technology equipment was selected for its flexibility and support of the spanning tree protocol (RSTP) “, Andrew Garwood said.

ProSoft Technology’s solutions helped ease the engineering work by making it possible for the ControlLogix system to communicate as one single protocol.

The system now allows data to be reviewed quickly, centrally and remotely, providing convenience when accessing diagnostic information.

Thousands of homes and businesses are now safely protected.


Remotely operated pneumatic water pumping system keeps Guernsey dry!

11/10/2014

Festo’s CPX platform – complete automation solution

Much like the mainland Britain, Guernsey has been ravaged by the forces of nature this year. But thanks to a remotely controlled, pneumatically operated pumping station that was completed last year, one area of the island has escaped damage from the resulting floods.

On February 3rd this year (2014) Guernsey faced one of its wettest and windiest days in recent memory. Heavy rain fell throughout much of the day and by the evening Guernsey Airport had recorded 32.5mm – more than an inch – of rainfall, flooding many of the island’s major roads, making several impassable and causing widespread disruptions.

Both local radio stations were forced off air as the FM transmitter was flooded, with TV signals being unavailable for part of the night. According to Guernsey Police more than 60 roads were flooded – which outpaced the number of closed signs available. Sandbags also ran short as authorities scrambled to contain the worst of the weather.

Guernsey_water

But thanks to improvements at the Marais Stream pumping station one area of the island emerged virtually unscathed from the onslaught. The pumping station, situated off les Banques not far from the capital of Guernsey, St Peter Port, is part of a network of facilities that form Guernsey Water’s infrastructure for the catchment, storage and transfer of raw water for the production of the island’s drinking water.

“Without a doubt we would have suffered big issues this winter with the heavy rainfall if we hadn’t undertaken the work there,” Andy Benstead, Water Production Manager, at Guernsey Water says. “I can guarantee that there would have been problems if we hadn’t upgraded it.

“We don’t actually have rivers in Guernsey they are all classified as streams; the Marais Stream has a fair catchment area and it includes a bank and an insurance company, and without this work they would have been flooded.”

 The work at the pumping station was an upgrade; the whole infrastructure was changed apart from an old tank that remained. “There were two reasons for the upgrade, part age and part because the area had suffered from a flooding problem,” Benstead adds. “The equipment is much bigger, more reliable, easier to control and we can now pump up to 1000 litres a second.”

Marais Stream pumping station was originally built in 1938 and required an upgrade to allow an increased volume of water to be collected and delivered to the nearby water treatment works with less going to waste.

Geomarine, a local civil engineering contractor, was contracted by Guernsey Water to carry out these improvement works as part of on-going works on the island’s infrastructure. Before the project was started all that was on site was a holding tank and pump house.

Marais Stream collects the run-off water from the local area and this is fed via the three inlet penstocks   through fine screens that remove debris that would damage the pumps in the pumping station. The water is then pumped either into the treatment works or, in the case of heavy rainfall such as earlier this year, can be diverted and discharged straight into the sea.

The entire system is run by Festo’s CPX remotely operated control system

The entire system is run by Festo’s CPX remotely operated control system

The pumping station is the first on the Island which could be considered ‘multifunctional’, as it incorporates three vital elements. Firstly, raw water (rainfall) is caught and transferred into Longue Hougue reservoir for conversion into drinking water. Secondly, stream water is used to maintain the cleanliness of the screens at the new Belle Greve Wastewater Treatment Centre. Finally, the new pumping station enables excess water to be pumped out to sea, which might otherwise overload the capacity of the Barker’s Quarry Reservoir and lead to localised flooding.

“Festo supplied three pneumatically operated penstocks, driven by linear actuators, to isolate the flow; these were located in the incoming channel,” Tony Gillard, Business Development Manager at Festo explains. “DNC cylinders with rod clamps are used to control the raising and lowering of the penstocks. These distribute the incoming water into the storage basins. From the storage basins, the water is distributed to various parts of the site by butterfly valves operated by pneumatic quarter-turn actuators.”

The entire system is run by Festo’s CPX remotely operated control system. The site itself is unmanned and is controlled via the SCADA system from the Guernsey Water Offices based five miles away. “The CPX platform is a complete automation solution that integrates a wide choice of pneumatic and electrical, analogue and digital I/O,” Gillard explains. “CPX systems configured for specific requirements are delivered pre-built, tested and ready for installation, enabling system integrators to meet tight deadlines and budgets. For additional flexibility, the CPX platform can operate as either a self-contained industrial PLC, or as a local unit on a Fieldbus or Industrial Ethernet-based distributed system. In addition, a wide choice of I/O and connector modules makes interfacing to process sensors and actuators easy.

“Remote operation is becoming more common; with pneumatic control you have the functionality to remotely operate the system,” Gillard adds.

Unusually for the water treatment sector is the selection of pneumatically controlled valves rather than electric. “On Great Britain it is more usual to have electric actuators but the advantages of pneumatics are beginning to sway the market,” Gillard says. “In most other applications, such as petro chemical and industrial applications, pneumatics are the preferred solution, but for some reason in water treatment and sewage plants electric actuation is still predominant for now.”

Pneumatic automation presents an extremely reliable alternative to electrical automation systems and reduces the costs of investment, installation and operation compared with conventional electrical installations.”

Guernsey Water has gone down the path of changing electric actuators to pneumatic and is reaping the benefits. Pneumatic control delivers energy saving, ease of installation, safety and reliability, because of less moving parts, as well as being faster to operate and easier to control.


Follow

Get every new post delivered to your Inbox.

Join 34 other followers