2014 lineup of technical division symposia announced!

04/12/2013

Deadlines for abstract submission are fast approaching

The International Society of Automation (ISA) has announced the dates, locations and Call for Papers (where applicable) for its technical division symposia for 2014.

Download ISA Brochure (pdf)

Download ISA Brochure (pdf)

These annual technical division symposia bring together innovators, thought leaders and other automation and control professionals around the world to explore and discuss the latest technologies, practices and trends, and gain high-value, peer-reviewed technical content across a wide variety of automation fields and disciplines.

There are several new or innovative features to be seen in the list. There are two new arrivals on the slate. These are the Food and Pharmaceutical Industries Division Symposium scheduled for their HQ in North Carolina (USA) 5-6 March 2014 and the  Process Control & Safety Symposium, which will be held in Houston (TX USA) 6-9 October 2014.  

Another innovation is the holding of one of these symposiums in Europe. The 60th ISA International Instrumentation Symposium will be held in England (London) in June (23-27 June 2014). This is possible the first time one of the main-stream seminars has been held outside of continental North America.

We notice that the 9th Sales & Marketing Summit will be held on-line. Again this is a first from the ISA for one of their ‘main-line’ conferences. The dates are 9-11 September 2014.

Details of the full slate of symposia may be accessed for the ISA website here!

The Society also publishes a Training Monthly which lists training courses and webinars.

Plan now to attend the 2014 ISA technical symposium or conference of your choice and professional interest and expertise.


Cloud Computing for SCADA

05/09/2013
Moving all or part of SCADA applications to the cloud can cut costs significantly while dramatically increasing reliability and scalability, says Larry Combs, vice president of customer service and support, InduSoft.

Although cloud computing is becoming more common, it’s relatively new for SCADA (supervisory control and data acquisition) applications. Cloud computing provides convenient, on-demand network access to a shared pool of configurable computing resources including networks, servers, storage, applications, and services. These resources can be rapidly provisioned and released with minimal management effort or service provider interaction.

By moving to a cloud-based environment, SCADA providers and users can significantly reduce costs, achieve greater reliability, and enhance functionality. In addition to eliminating the expenses and problems related to the hardware layer of IT infrastructure, cloud-based SCADA enables users to view data on devices like smartphones and tablet computers, and also through SMS text messages and e-mail.

Our company (InduSoft), along with a number of others, provides SCADA software and services for firms that want to use their own IT infrastructure, the cloud, or a combination of both to deploy their applications. We provide upfront consulting and advice to help customers make the best choice depending on their specific requirements and capabilities.

A cloud can be public or private. A public cloud infrastructure is owned by an organization and sold as services to the public. A private cloud infrastructure is operated solely for a specific customer. It may be managed by the customer or by a third party; it may exist on premise or off premise. Hybrid clouds consist of private and public clouds that remain unique entities but are bound together by standardized or proprietary technology that enables data and application portability.

Cloud computing can support SCADA applications in two fashions:

  • The SCADA application is running on-site, directly connected to the control network and delivering information to the cloud where it can be stored and disseminated, or
  • The SCADA application is running entirely in the cloud and remotely connected to the control network.
Figure 1: A public cloud formation in which the SCADA system is running onsite and delivers data via the cloud

Figure 1: A public cloud formation in which the SCADA system is running onsite and delivers data via the cloud

The first method is by far the most common and is illustrated in Figure 1 (right). The control functions of the SCADA application are entirely isolated to the control network. However, the SCADA application is connected to a service in the cloud that provides visualization, reporting, and access to remote users. These applications are commonly implemented using public cloud infrastructures.

The implementation illustrated in Figure 2 (below) is common to distributed SCADA applications where a single, local SCADA deployment is not practical. The controllers are connected via WAN links to the SCADA application running entirely in the cloud. These applications are commonly implemented using private or hybrid cloud architectures.

Service Choices
Most experts divide the services offered by cloud computing into three categories: infrastructure as a service (IaaS), platform as a service (PaaS), and software as a service (SaaS).

Figure 2: A private/hybrid cloud in which the controllers are connected via WAN links to the SCADA application running entirely in the cloud.

Figure 2: A private/hybrid cloud in which the controllers are connected via WAN links to the SCADA application running entirely in the cloud.

An IaaS such as Amazon Web Services is the most mature and widespread service model. IaaS enables service provider customers to deploy and run off-the-shelf SCADA software as they would on their own IT infrastructure. IaaS provides on-demand provisioning of virtual servers, storage, networks, and other fundamental computing resources.

Users only pay for capacity used, and can bring additional capacity online as necessary. Consumers don’t manage or control the underlying cloud infrastructure but maintain control over operating systems, storage, deployed applications, and select networking components such as host firewalls.

PaaS, like Microsoft’s Azure or Google Apps, is a set of software and product development tools hosted on the provider’s infrastructure. Developers use these tools to create applications over the Internet. Users don’t manage or control the underlying cloud infrastructure but have control over the deployed applications and application hosting environment configurations. PaaS is used by consumers who develop their own SCADA software and want a common off-the-shelf development and runtime platform.

SaaS, like web-based e-mail, affords consumers the capability to use a provider’s applications running on a cloud infrastructure from various client devices through a thin client interface like a web browser. Consumers don’t manage or control the underlying cloud infrastructure but instead simply pay a fee for use of the application.

SCADA vendors have been slow to adopt the SaaS service model for their core applications. This may change as the uncertainty of cloud computing begins to clear. For now, vendors are beginning to release only certain SCADA application components and functions as SaaS, such as visualization and historical reporting.

Economical Scalability
With all three service models, scalability is dynamic and inexpensive because it doesn’t involve the purchase, deployment, and configuration of new servers and software. If more computing power or data storage is needed, users simply pay on an as-needed basis.

Companies don’t have to purchase redundant hardware and software licenses or create disaster recovery sites they may never use. Instead they can provision new resources on demand when and if they need them. Add in the costs that a company would otherwise incur to manage an IT infrastructure, and the savings of moving to the cloud could be huge.

Instead of numerous servers and backups in different geographic locations, the cloud offers its own redundancy. On-demand resource capacity can be used for better resilience when facing increased service demands or distributed denial of service attacks, and for quicker recovery from serious incidents. The scalability of cloud computing facilities offers greater availability. Companies can provision large data servers for online historical databases, but only pay for the storage they’re using.

Building an IT infrastructure is usually a long-term commitment. Systems can take months to purchase, install, configure, and test. Equivalent cloud resources can be running in as little as a few minutes, and on-demand resources allow for trial-and-error testing.

The ability to easily switch back to a previous configuration makes it easier to make changes without having to start from scratch by taking a snapshot of a known working configuration. If a problem occurs when deploying a patch or update, the user can easily switch back to the previous configuration.

On-site IT projects involve significant cost, resources, and long timelines—and thus include significant risk of failure. Cloud computing deployments can be completed in a few hours with little or no financial and resource commitments, and therefore are much less risky.

Manageability, Security, and Reliability
The structure of cloud computing platforms is typically more uniform than most traditional computing centers. Greater uniformity promotes better automation of security management activities like configuration control, vulnerability testing, security audits, and security patching of platform components.

A traditional IT infrastructure environment poses the risk that both the primary and the single backup server could fail, leading to complete system failure. In the cloud environment, if one of the cloud computing nodes fails, other nodes take over the function of the failed cloud computing node without a blip.

If a company chooses to implement its own IT infrastructure, access to user data in this infrastructure generally depends on the company’s single Internet provider. If that provider experiences an outage, then users don’t have remote access to the SCADA application. Cloud computing providers have multiple, redundant Internet connections. If users have Internet access, they have access to the SCADA application.

The backup and recovery policies and procedures of a cloud service may be superior to those of a single company’s IT infrastructure, and if copies are maintained in diverse geographic locations as with most cloud providers, may be more robust. Data maintained within a cloud is easily accessible, faster to restore, and often more reliable. Updates and patches are distributed in real time without any user intervention. This saves time and improves system safety by enabling patches to be implemented very quickly.

Challenges and Risks
Cloud computing has many advantages over the traditional IT model. However, some concerns exist in regard to security and other issues. Data stored in the cloud typically resides in a shared environment. Migrating to a public cloud requires a transfer of control to the cloud provider of information as well as system components that were previously under the organization’s direct control. Organizations moving sensitive data into the cloud must therefore determine how these data are to be controlled and kept secure.

Applications and data may face increased risk from network threats that were previously defended against at the perimeter of the organization’s intranet, and from new threats that target exposed interfaces.

Access to organizational data and resources could be exposed inadvertently to other subscribers through a configuration or software error. An attacker could also pose as a subscriber to exploit vulnerabilities from within the cloud environment to gain unauthorized access. Botnets have also been used to launch denial of service attacks against cloud infrastructure providers.

Having to share an infrastructure with unknown outside parties can be a major drawback for some applications, and requires a high level of assurance for the strength of the security mechanisms used for logical separation.

Ultimately to make the whole idea workable, users must trust in the long-term stability of the cloud provider and must trust the cloud provider to be fair in terms of pricing and other contractual matters. Because the cloud provider controls the data to some extent in many implementations, particularly SaaS, it can exert leverage over customers if it chooses to do so.

As with any new technology, these issues must be addressed. But if the correct service model (IaaS, PaaS, or SaaS) and the right provider are selected, the payback can far outweigh the risks and challenges. The cloud’s implementation speed and ability to scale up or down quickly means businesses can react much faster to changing requirements.

The cloud is creating a revolution in SCADA system architecture because it provides very high redundancy, virtually unlimited data storage, and worldwide data access—all at very low cost.

fig3

Remote SCADA with Local HMI Look and Feel
Vipond Controls in Calgary provides control system and SCADA solutions to the oil and gas industry, including Bellatrix Exploration. To keep up with customer demand for faster remote data access, Vipond developed iSCADA as a service to deliver a high-performance SCADA experience for each client.

One of the greatest challenges in developing iSCADA was the state of the Internet itself as protocols and web browsers weren’t designed for real-time data and control. Common complaints of previous Internet-based SCADA system users included having to submit then wait, or pressing update or refresh buttons to show new data.

Many systems relied only on web-based technologies to deliver real-time data. Because the HTTP protocol was never designed for real-time control, these systems were always lacking and frustrating to use whenever an operator wanted to change a setpoint or view a process trend.
Users were asking for an Internet-based SCADA system with a local HMI look and feel, and that became the goal of Vipond Controls. This goal was reached with iSCADA as a service by giving each customer an individual virtual machine within Vipond’s server cloud.

All data is now kept safe and independent of other machines running in the cloud. A hypervisor allows multiple operating systems or guests to run concurrently on a host computer, and to manage the execution of the guest operating systems. The hypervisors are highly available and portable, so in the event of a server failure, the virtual machine can be restarted on another hypervisor within minutes.

All the SCADA software runs within the virtual machine, and users are offered a high degree of personal customization. Customers can connect directly to on-site controllers, and Vipond can also make changes to controllers and troubleshoot process problems.

This cloud-based SCADA solution can reduce end-user costs up to 90% over a traditional SCADA system, thanks to the provision of a third-party managed service and the reduction of investment required for IT and SCADA integration, development, hardware, and software.


Automation preventing nuclear disasters

26/08/2013

Thoughts of an automation thought leader stimulated by the events at the Fukushima nuclear power station in the wake of the tsunami in 2011.

Bela Lipták is one of those people who may without doubt be called an automation leader such as mentioned in Nick Denbow’s recent article, Who are the Automation Thought Leaders?

Lipták, a patriotic Hungarian by birth, has done much to pass on his considerable knowledge to the next generation of automation professionals. He is a worthy recipient of the ISA’s Life Achievement Award  for his history of dedication to the instrumentation, systems, and automation community as evidenced by his teachings, writings, and inventions. He has published over 200 technical articles and has written 34 technical books, including four editions of the multi-volume Instrument Engineer’s Handbook.

He has published a series of articles through the years on the role of automation and more specifically how its correct application might have have prevented some of the sometimes fatal and always catastrophic nuclear disasters that have occurred down the years. Events such as that at Three Mile Island (USA) in 1979 or in Chernobyl (Former USSR) in 1986.

Of course the most recent such incident is the Fukushima Power Station irrepairably damaged after the major earthquake and subsequent tsunami in North East Japan. All these studies have been published in Control Global, or its sister publication and normally we would just put a link on our news pages (and indeed may have in some cases at the time of publication). This time we are using this method because he has published several articles at different times continuing his thoughts on this major and still alarming disaster.

The Fukushima Nuclear Accident – Part 1 (15/4/2011) Béla Lipták talks about the safety processes used at the plant.

Preventing Nuclear Accidents by Automation – Part 2 (5/7/2011) Bela Liptak here discusses the design and control errors at Fukushima, because they still exist in many american boiling-water reactors (BWR) and must be corrected.

How Automation Can Prevent Nuclear Accidents-Part 3 (31/8/2011) Watch out for outdated and/or unreliable instruments. These can cause major disasters.

In Automation Could Have Saved Fukushima (Part 1), (15/3/2013) Liptak says that if the Fukushima level detectors had operated correctly, the hydrogen explosions would have been prevented.

Automation Could Have Prevented Fukushima, (Part 2) (30/4/2013) discusses automatic vs. manual operation of the emergency cooling systems, and the roles the bad designs of control and block valves played in this nuclear accident.

He promises some further articles and we hope to put links here to those as they appear.

 


A handy compilation of expert cybersecurity resources!

01/08/2013

“…the latest cybersecurity strategies, recommendations and tools that can immediately be applied to protect your industrial control systems and process control networks..”

A complete list of inclusions in the Cybersecurity Tech Pack.

Technical papers
cybersecurityshieldCyber Security Implications of SIS Integration with Control Networks
Practical Nuclear Cyber Security
Establishing an Effective Plant Cybersecurity Program
LOGIIC Benchmarking Process Control Security Standards
Stronger than Firewalls: Strong Cyber-Security Protects the Safety of Industrial Sites
Integrated Perimeter and Critical Infrastructure Protection with Persistent Awareness
Applying ISA/IEC 62443 to Control Systems
Establishing an Effective Plant Cybersecurity Program
Getting Data from a Control System to the Masses While Maintaining Cybersecurity–The Case for “Data Diodes”
Reconciling Compliance and Operation with Real Cyber Security in Nuclear Power Plants
Wastewater Plant Process Protection—Process Hazard Analysis
Water/Wastewater Plant Process Protection: A different approach to SCADA cyber security
Using Cyber Security Evaluation Tool (CSET) for a Wastewater Treatment Plant
Improving Water and Wastewater SCADA Cyber Security
An Overview of ISA-99 & Cyber Security for the Water or Wastewater Specialist

Technical books
Industrial Automation and Control Systems Security Principles by Ronald L. Krutz
Industrial Network Security, Second Edition by David J. Teumim

InTech magazine articles
“ISA Fully Engaged in Cybersecurity”
“Leveraging DoD wireless security standards for automation and control”
“13 ways through a firewall: What you don’t know can hurt you”
“Defense in Depth”
“Executive Corner: What’s on YOUR mind?”
“The Final Say: Securing industrial control systems”
“Uninterruptible power supplies and cybersecurity”
“Physical Security 101: Evolving ‘defense in depth’”
“Web Exclusive: Control network secure connectivity simplified”
“The Final Say: Network security in the Automation world”
“Executive Corner: Defense in depth: It’s more than just the technology”
“Web Exclusive: Stuxnet: Cybersecurity Trojan horse”

To help manufacturers and plant and facility operators improve their cybersecurity defenses and better confront the growing dangers of cyberwarfare, the International Society of Automation (ISA) has produced the ISA Cybersecurity Tech Pack.

“The ISA  Cybersecurity Tech Pack is an assembly of the latest technical papers, PowerPoint presentations, technical books and InTech articles developed by some of the world’s leading experts in cybersecurity and industrial automation and control systems security,” says Susan Colwell, manager of publications development at ISA. “These materials—which can be downloaded from the ISA website—include the latest cybersecurity strategies, recommendations and tools that can immediately be applied to protect your industrial control systems and process control networks.”

As a widely recognized, world leader in cybersecurity standards development, training and educational resources, ISA provides the proven technical expertise and know-how to help safeguard industrial automation and control systems.

For instance, the ANSI/ISA99 (IEC 62433), Industrial Automation and Control Systems Security standards—developed by a cross-section of international cybersecurity subject-matter experts from industry, government and academia—represent a comprehensive approach to cybersecurity in all industry sectors. ISA and its sister organization, the Automation Federation, is currently assisting the Obama administration and US federal agency officials develop the initial version of a national cybersecurity framework—as called for by President Obama in February of this year.

The ISA Cybersecurity Tech Pack also includes two cybersecurity-focused ISA books: the popular Industrial Network Security by David J. Teumim; and the recently introduced Industrial Automation and Control Systems Security Principles by Ronald L. Krutz, Ph.D. As an added bonus, the compilation includes many highly relevant and informative cybersecurity articles published in InTech magazine, ISA’s bi-monthly magazine for automation and control professionals.

• See also our ICS & SCada Security page


Safer containers with FTIR

04/03/2013

antti HeikkilaThis paper, by Gasmet’s Antti Heikkilä, describes how sophisticated gas analysis is being used to check these cargo containers, but this is just one example of the advantages that are available from an analytical technology that can measure almost any gas.
Antti Heikkilä (right) is a senior manager at Gasmet Europe Oy, specialising in developing new applications for the Gasmet FTIR gas analyzers. He holds a MSc degree in Physical Chemistry and has 14 years’ expertise in FTIR spectrometry and quantitative gas analysis, working for the University of Helsinki and Gasmet Technologies group.

Introduction
Entry to freight containers represents a significant hazard to staff responsible for inspection, stuffing or destuffing because of the large number of airborne chemicals that can be present. Research in Germany and the Netherlands found hazardous levels of gases and vapours in around 20% of all containers and this level of contamination is now accepted as commonplace.

Container testing!

Container testing!

It is therefore necessary to examine containers before entry and this work is usually conducted with a wide variety of gas detection techniques in order to be able to assess, individually, all of the substances of greatest concern. However, a Dutch firm of health and safety consultants, Reaktie, has employed FTIR (Fourier Transform Infra Red) gas analysis to dramatically improve the speed and effectiveness with which containers are assessed, because this technology enables the simultaneous measurement of the 50 gases of most concern.

Chemical Hazards
There are two potential sources of hazardous chemicals inside cargo containers; fumigants and chemicals that arise from the goods or packing materials.

Fumigants are applied to goods to control pests and micro-organisms. Cargoes most likely to have been fumigated include foodstuffs, leather goods, handicrafts, textiles, timber or cane furniture, luxury vehicles and cargo in timber cases or on timber pallets from Asia.

According to the IMO’s international regulations, ‘Recommendations on the safe use of pesticides in ships’, fumigated containers and ship cargoes must be labelled giving specifications about dates of fumigation and the fumigation gas used. Furthermore, appropriate certificates are necessary and these records have to be forwarded to the Port Health Authorities without their explicitly asking for them. However, absence of marking cannot be taken to mean fumigants are not present. Containers marked as having been ventilated after fumigation may also contain fumigant that was absorbed by the cargo and released during transit. There is also concern that fumigants may be retained in the goods and subsequently present a hazard to logistics providers, retail staff and consumers.

Common fumigants include Chloropicrine, Methyl bromide, Ethylene dibromide, Sulfuryl fluoride and Phospine. However, with over 20 years of experience testing gases in containers, Peter Broersma from Reakti says “While the fumigants are highly toxic, the number of containers exceeding occupational exposure limits (OEL) due to other chemicals is much greater and the number of ‘failed’ containers is likely to rise as more containers are tested, detection methods improve and new gases are identified.”

Containers often travel for extended periods and experience a wide range of temperatures. It is therefore not surprising that unsafe levels of gases should accumulate in the confined space of a container. Peter identifies the typical sources of gases over their OELs as follows:

  • Solvents from glues used to produce clothing, accessories and shoes
  • 1,2, dichloroethane from plastic products, PVC, blister packaging etc.
  • Formaldehyde found in cheap furniture (Plywood,MDF etc.) but also in used pallets and lashing materials
  • Solvents and formaldehyde from poly-resin products
  • Carbon monoxide from charcoal and natural products
  • Carbon dioxide from natural products
  • Ethylene oxide from medical equipment sterilised with ethylene oxide
  • Solvents including Benzene, Toluene, Ethylbenzene and Xylene (BTEX) in Christmas and decoration products
  • Flammable gases from disposable lighters
  • Ammonia in household equipment with Bakelite parts
  • Volatile Organic Compounds (VOCs) from fire blocks
  • Pentanes and hexanes from consumer electronics
  • Phosphine/arsine from natural minerals such as ferrosilicon

Inspection procedures
Major ports have strict regulations in place to protect against potential hazards in cargo containers. In general terms, every incoming stream of products has to be checked for dangerous gases and if one of more gases are detected during the preliminary investigation, all of the containers from this specific producer must be checked. If no gases are detected, it may be possible to only conduct random tests a few times per year. If it is necessary for Customs staff to enter a container, all containers must first be tested and if necessary de-gassed.

Gas detection
Since there are a large number of gases that might be present inside a container, the traditional approach to monitoring has been either to employ a wide range of instruments or to use chemical stain tubes for the most common gases, or a combination of both.

Chemical stain tubes provide a colorimetric assessment of an individual gas, typically with an accuracy of +/- 15%. Different tubes are available for many gases and results can be obtained between 5 seconds and 15 minutes depending on the test. Once a result has been obtained, the tube itself is hazardous waste and must be disposed of. Historically stain tubes have been popular because the cost per test is low. However, the number of tubes that have to be employed in order to demonstrate that a container is safe can be prohibitively expensive and time-consuming to employ.

Instrumental gas analyzers such as electrochemical sensors, that measure either a single gas or a small number of gases impart a similar level of risk to stain tubes because of the possibility of missing or failing to measure a harmful gas. Deploying multiple instruments also presents practical problems because each will require maintenance and re-calibration in addition to a power source or re-charging. Nevertheless, Reaktie for example, would normally conduct a preliminary assessment with a PID gas detector for total VOCs; an LEL combustible gas sensor and handheld electrochemical sensors might be employed for toxic gases such as carbon monoxide, phosphine, ammonia and ethylene oxide. An FTIR analyser would then be employed to measure 50 target gases simultaneously in a test that would take approximately 3 minutes. This ability to measure compounds individually is important because, for example, whilst a PID gas detector measures total VOCs, it does not provide an individual value for, say, benzene, which is a known carcinogen.

One of the potential problems with electrochemical sensors is their inability to cope with high concentrations in a sample gas. This can result in poisoning of the cell, which would normally result in instrument failure. In contrast, similar high concentrations do not harm FTIR, and the instrument can recommence analysis after a few minutes of backflushing.

DX4040

Gasmet DX4040

Peter Broersma has been one of the first to utilise FTIR in the assessment of containers since it first became possible to acquire the technology in a portable battery powered unit. He says “The problems with hazardous gases in cargo containers is now widely publicised and the requirement for testing is growing as employers fulfil their responsibility to protect the health and welfare of staff. However, the traditional testing methods are laborious, time-consuming and risk failing to find a potentially harmful gas.
“FTIR has long been established as an accurate technology for the simultaneous measurement of gaseous emissions from industrial processes, so when the Finnish company Gasmet developed a portable version we were very eager to investigate its feasibility in container testing.
“Following our initial tests, we worked with Gasmet to develop a configuration for the portable FTIR (a Gasmet DX4030) that would measure the 50 compounds of greatest concern. As a result, we are now able to test for all of these gases in around 3 minutes, which dramatically lowers the time taken for container inspection and greatly increases the number of containers that can be examined every day.
“A further major advantage of this technology is the minimal amount of calibration and maintenance that is necessary. A new instrument can be delivered pre-configured and factory calibrated and from then on the only calibration required is a quick zero check with nitrogen once or twice per day. As a result, it is not necessary to transport a large number of expensive, bulky calibration bottles.
“We now use a portable FTIR for all of our container examination work and we have also supplied a number of these units to freight companies that wish to conduct their own testing. This technology is now in use at Rotterdam, Amsterdam, Vlissingen, Antwerp and Hamburg, and a company providing ship fumigation and degassing is using portable FTIR all over the world.”

Fourier Transform Infra Red (FTIR)
An FTIR spectrometer obtains infrared spectra by first collecting an ‘interferogram’ of a sample signal with an interferometer, which measures all infrared frequencies simultaneously to produce a spectrum.

Over a number of years, Gasmet has established a library of reference spectra that now extends to simultaneous quantification of 50 gases or identification of unknowns from a collection of 5000+ gases. This means that it is possible to
reanalyze produced spectra with the instrument’s PC based software (Calcmet) and thereby to identify unknown gases – a major advantage of FTIR.

Whilst FTIR is able to analyse an enormous number of gases, the technique is not suitable for inert gases, homonuclear diatomic gases (e.g., N2, Cl2, H2, F2, etc) or H2S (detection limit too high).

High levels of accuracy and low levels of maintenance are achieved as a result of continuous calibration with a He-Ne laser, which provides a stable wavenumber scale. In addition, high spectral signal to noise ratio and high wavenumber precision are characteristic of the FTIR method. This yields high analytical sensitivity, accuracy and precision.

Summary
Millions of containers arrive in international ports every year and it is clear that a large proportion of them represent a significant hazard. Employers have a duty of care to protect their staff and court cases have found in favour of workers that have suffered ill-health from container gases. It is inevitable therefore that the amount of testing required will continue to increase so there will be a greater emphasis on speed, risk reduction and cost.

Portable FTIR gas analysers substantially reduce the amount of equipment required to test a container, but more importantly, the technology enables the simultaneous analysis of a large number of target compounds, which improves the effectiveness of the assessment and reduces risk to staff. The technique is also much faster and avoids the use of disposable equipment.


Implementing automated machinery safety

19/02/2013

One of the most significant trends driving automation relates to machinery safety and how the integration of technologies is key to advances in this area. Here, Nigel Dawson, Festo GB’s Product Manager for Electric Drives, surveys interesting developments making life easier for design engineers.

While the subject of machinery safety is not new, it continues to play a key role in machine and plant construction. But, there are many different approaches and a great deal of uncertainty amongst machine builders in how to handle these issues and what degree of complexity and cost they need to go to, to adequately minimise risks; it isn’t surprising many machine builders and end users seek advice and support.

A fully integrated approach that monitors both the axis of a machine and allows safety-related clamping or braking is the best, safest solution!

A fully integrated approach that monitors both the axis of a machine and allows safety-related clamping or braking is the best, safest solution!

In applications that are not protected by physical safety guards, but where personnel can come into direct contact with plant components, the Machinery Directive 2006/42/EC indicates systems must provide adequate risk reduction through integrated safety functions.

In many cases an overall safety concept, requires the monitoring of moving axis, as well as safety-related clamping or braking, depending on the expected conditions. In higher risk applications two independent channels are required. In the past, machine builders would often design in their own safety solutions that took the safety switching device and wired in the STO, or Safe Torque Off, function. Frequently servo motor have been replaced by a motor and brake combination in vertical applications.

Now there are several problems with this approach; they do not take into account all the possible failure states – a coupling assembly breakage or slippage or a broken toothed belt in a parallel mounting kit could render the brake useless. These faults could still allow the carriage and load to fall, causing damage or injury.

A fully integrated approach that monitors both the axis of a machine and allows safety-related clamping or braking is the best, safest solution and this is exactly what Festo’s electric axis EGC unit does, it has an optional second channel displacement encoder and one or two channel clamping unit. The mechanical system can be monitored by both a motor encoder (first channel) and the linear displacement encoder (second channel) mounted on the axis providing two channel monitoring.

The axis can also be specified with single or dual-channel clamping units EGC-HPN which are suitable for holding a position, collision protection and, due to their emergency braking features, enhance safety in any vertical axes, for example, those which are typically used in lifting and stacking applications.

Of course legislative safety is not the only use of such features as additional encoders and mechanical braking systems. External encoders offer direct input into Festo servo controllers to allow unsurpassed positional repeatability on mechanical axis. For instance, it is now possible to achieve 10 micron positional repeatability on a standard belt drive when configured with a simple low cost encoder option, giving machine builders belt drive performance with ballscrew accuracy. Similarly vertical loads can be held safely for long periods without the need for high current usage on servo motors, by choosing a simple mechanical clamp option.

With today’s safety standards it is a more complicated task for designers to gather together all of the data from different manufacturers to calculate and document their own designed safety solutions. The Festo EGC axis provides a cost effective solution for compliance to the requirements of the Machinery Directive in a neat and self contained assembly and a single part number. Festo provides information on a wide range of electric and pneumatic safety functions through a Safety Guidelines manual that can be downloaded from their website and distributed through the Machinery Safety Alliance seminar program.


Potential for Global machine safety market

14/01/2013
Manufacturing Boom in Emerging Economies Offers Huge Potential for Global Machine Safety Market

sabhaltachtWith the introduction of stringent safety requirements in developed countries, demand for machine safety solutions is expected to rise significantly. The growth of manufacturing sectors in emerging countries fuels further adoption. Manufacturers world-wide recognise that machine safety can give them a competitive advantage and a good public image, and therefore, opt for machine safety systems despite the economic downturn.

New analysis from Frost & Sullivan“Strategic Analysis of Global Machine Safety Market”, finds that the market earned revenues of over€95m ($1.27 billion) in 2011 and estimates this to reach €1.31billion ($1.75 billion) in 2016.

“Safety systems monitor health of plant equipment to reduce its exposure to damage and lengthen its life-cycle,” said Frost & Sullivan Research Analyst Anna Mazurek. “In addition, they decrease the probability of work-related injuries, allowing machine operators to work more efficiently. This drives end users to employ machine safety solutions.”

Moreover, regulations require employers to create a safe working environment for employees. Manufacturers, especially in developed countries where law enforcement is high, are aware that it is more cost-efficient to use machine safety devices than bear the penalty for non-compliance. Improvements in safety solutions also offer business opportunities for machine safety vendors among conservative end users.

However, the recent downturn has forced manufacturers to concentrate on reducing operating and maintenance costs, leading to declining investments in areas not crucial for plant operation. Unfortunately, this can cover safety solutions as well, which many end users still view as non-critical. In developing countries, poor execution of policies curbs investment, which leads to lower sales and slower development of technology.

A change in perception is vital to market penetration. End users need to realise that a safe working environment is not an optional production process improvement, but a necessity and an obligation to employees.

“To drive adoption, suppliers need to educate potential customers on the full range of safety benefits offered through the advancements in plant networking devices and control systems,” concluded Mazurek. “To optimise their investment, end users must know how to assess the risk of injury and opt for solutions that can address those specific needs.”

Strategic Analysis of Global Machine Safety Market is part of the Industrial Automation & Process Control Growth Partnership Services program, which also includes research in the following areas: electronic safety sensors, safety interlock switches, safety relays, and safety programmable logic controllers (PLCs). All research services included in subscriptions provide detailed market opportunities and industry trends evaluated following extensive interviews with market participants.


#Autofair Discover, learn and experience in the City of Brotherly love!

14/11/2012

“The coming decade will be the first in 200 years when emerging-market countries contribute more growth than the developed ones,” was the challenging message from Keith Nosbusch, Rockwell Automation’s chairman and CEO as he kicked off this years Automation Fair in the city of brotherly love, Philadelphia (PA USA).

The busy floor at #autofair

As is our wont we followed this from this side of the Atlantic on twitter and facebook. Our “report” is not meant to be comprehensive or even representative of what happened but merely a flavour as we looked in on tweets as they came in.

Rockwell are among the best prepared for using social media and tweets from @AutomationFair are frequently sent with the latest snippets of news many months in advance of each fair. The has tag is #autofair  and the also use #PSUG for their Process Users Group meeting which immediatly preceeds the fair. Also part of this event was their Safety Automation Forum, and there was also a Global Forum on Manufacturing Perspectives.

But I’ll let some of the tweets speak:

“Virtualization on a fast track: 60% of data centers today; 90+% in a few years.” and “IT should be a platform for innovation.” This latter might indecate that it perhaps isn’t or is not allowed to progress in the automation sector. Nevertheless Nancy Youn from VMWare  mantains “We’re leading the convergence of next-generation automation and IT technologies.”

Rockwell Automation’s
Automation Fair on uTube

Reports
Control Global
Day 1  []  Day 2  []  Day 3

Automation World
Day 1  [] Day 2

The Manufacturer
Making equipment and skills go further

Electrical Engineering
21st Rockwell Automation Fair arrives in Philadelphia

Follow them on twitter
#autofair and #PSUG

These events are great for stimulating or exposing avenues for progress. “There’s tremendous potential in using a unified architecture for process + discrete automation needs!” said Rockwell’s John Genovesi. He then queried “Do you leverage your data or just display it?” And the same speaker also echoed his CEO, “More than 70 million people per year are crossing the threshold into the middle class, and virtually all of them are in emerging economies.”

Anothe speaker, Craig Giffi, VC of Industrial Products at Deloitte, made a statement which although it refers to the United States will strike a familiar note in other parts of the first and second worlds:: “600,000 US manufacturing jobs unfilled as can’t find the staff!”

The talk about safety appears to have been stimulating too. “Safety Performance Gap: The difference between what is expected vs. what is accepted by company leadership, supervisor & employee personal.”

But the Automation Fair  proper started on the Wednesday (7 November) and we had a plethera of tweeets inviting, cajoling, luring us in “Rockwell Automation Fair, Nov 7-8 in Phila, Booth 826 – Come on down! Looks exciting!” “Automation Fair safety booth coming together in Philadelphia.” and ” See video previews  of what you can expect at #autofair this week!” and “Todo listo para otro excelente año del Automation Fair en Philadelphia!!!” (Twitter is multilingual also messages in oriental languages!).

Need just ONE MORE CUP of coffee this morning!

Pictures of people adressing attendees, stands and other relevent and what we might consider less so like the twitpic of an alarmingly large pile of coffee cups – “Need just ONE MORE CUP of coffee this morning!”

Cisco tweeted: “We’ll continue tweeting all the latest updates from @AutomationFair! Be sure to check back with us frequently!”

Maverick told us “Attending #autofair & discussing control, configuration, operator effectiveness, asset management & safety with our #pauto #mfg colleagues.”

Videos from #autofair will appear on the @ROKAutomation YouTube page  throughout the show!”

Over all the event was the shadow of the terrible aftermath of the hurricane Sandy, which over the previous week had wrought havoc and death in the Carribean and the north-east coast of the US including New Jersey and New York though mercifully Philadelphia was spared the worst of the damage which is still causing major difficulties in those areas worst affected. A system of collecting funds was inaugurated with Rockwell equaling the amount collected at the show!

The tweets continued but now they were added to by the America Automation Press, notably Control Global and Automation Weekly. Links to these and others are in the box on the right..

But of course it wasn’t all hard slog: “Automation Fair in Philadelphia. I came, I looked at industrial controls, I ate cheesesteak!”

Many times at these events we hear of guys oogling the lady participants. It is however important to balance these statements and here is a female tweet “Last day working at the @AutomationFair Great vibe here. A lot of handsome men too. ;)”

I think we should stop there!

The next Automation Week is scheduled for Houston (TX USA) 13-14 November 2013.


Safety and Performance at Gulf Coast (US) Oil Rig

29/10/2012
 Improving safety and performance on oil production platform

Moore Industries-International recently helped a major oil and gas company comply with new federal safety regulations relating to communications with offshore oil platforms.

White Paper from Moore Industries

A new case study, Remote Emergency Shutdown Device Improves Safety and Performance at Oil Production Platform (pdf, 236k)  by Jim McConahay, P.E., Senior Field Applications Engineer with Moore and  Richard Conway, Facility Engineer, ENI Petroleum, highlights how ENI Petroleum was able to use the NCS NET Concentrator System® from Moore Industries to establish a direct, real-time communications link between its Devil’s Tower oil platform off the coast of Louisiana and drill ships operating more than 100 km away. The communications system assures that quick action can be taken in case of an emergency and reduces the risk of expensive shutdowns.

Rising more than one mile above the sea bed in the Mississippi Canyon region of the Gulf of Mexico, the Devil’s Tower oil rig is operated by ENI, an Italian multinational oil and gas company. The Devil’s Tower platform is one of the deepest production truss spars in the world, with ships performing drilling operations near subsea pipelines that transport oil and gas to and from the production platform.

New federal regulations forced ENI to create a solution that would allow control room operators to communicate with the drill ships and initiate an emergency shutdown in case of an serious event such as a “dropped object” impacting a submerged pipeline. The solution needed to be effective but avoid false shutdowns – a shutdown of one day costs $100,000 in lost production. ENI had previously used short-range radio links for communication but an expansion of operations took drill ships out of the range of this type of “over the horizon” communications link.

To meet its communications challenges, ENI developed a system across its Ethernet network using the NCS NET Concentrator System mounted on DIN rails. Using an Ethernet Interface Module in the control rooms of the oil platform and drill ships, the drill ship operator can use a push button switch to sound a klaxon horn at the oil platform control room to alert them of a potential threat. In addition, if communications are lost between the drill ship and the platform and human operators are not available to respond, a shutdown procedure is automatically triggered.

“ENI needed a reliable, low-cost communications platform to meet new federal requirements and extend the range that their drill ships could operate safely,” said Jim McConahay. “The NCS NET Concentrator System proved to be a flexible and dependable solution that allows ENI to maintain contact with drill ships and take quick action should any problems arise.”


Not a Mickey Mouse event….

02/10/2012
Learning the central motif in the third Automation Week.
Other Reports
How Your Plant Resembles an Amusement Park! (Paul Studebaker, Sustainable Plant)
Advanced Control Foundation at ISA Automation Week  (Terry Blevins, Blog)
A tale of two conferences (Gary Mintchel, Automation World)
ISA Automation Week 2012: Innovation in Orlando (Jim Montague, Control)
Automation Professionals Share Challenges, Solutions at ISA Automation Week 2012 (ISA Official Release)
Automation Professionals attend ISA Automation Week (Automation.com)
ISA Automation Week 2012 (Barry Young ARC)
Not a Mickey Mouse Event, ISA Week Overview (Automation Week)
Fall Leaders Meeting & Automation Week, It’s A Wrap! (ISA Interchange)


President Bob Lindemen Comments:
Real conversations start here!

Proceedings AVAILABLE

Last year we reported on the annual ISA Automation Week held in the port city of Mobile (AL USA). We said that the ISA played to its strengths and demonstrated these to be in the area of training and dessemination of knowledge.

This year in the larger venue in Florida’s Orlando, the strengths and the weaknesses of the event were clear. But the event could by no means be called a flop still less a disaster or a Mickey Mouse event. (See note at bottom of page for this reference “Mickey Mouse Event!”).

Peter Martin introduces the first keynote speaker!

Strong and relevant programme.
The strength was undoubtedly technical programme. ISA again demonstrated unequivically that its top priority was this programme it truly does serve as the cornerstone of the event. It was a world-class conference covering the latest and hottest topics in automation and control across several technical tracks. Each track offered in-depth sessions—ranging from basic to advanced—with information critical to several identified automation and control career paths.

We were unable to attend many of these sessions but those we did attend were quite remarkable in the quality and clarity of the presentations, the breadth of knowledge imparted, the intelligence of the questions asked as well as the number of delegates attending each. The Programme Chairman, Peter Martin of Invensys and his Vice-Chair, Alison Smith of Aspen certainly deserve credit for such a relevent programme.

It was divided into strands or tracks, as they called them, under two broad headings. The first such were called Operational Excellence Tracks which included Control Performance , Asset Performance, Human Perfornace and Safety/Environmental topics. The Technology Excellence Tracks included Wireless and the currently hot topic of Security. As can be seen some of the tracks would have a certain overlap with others and there were inevitably clashes in the programme as due to limitations of time sessions on say Human Performance and Security, or Wireless and Asset Performance would occur at the same times. ISA tried to alleviate this somewhat by providing the conference proceedings for delegates on line on their site. (Only attendees registered to the conference have access to these papers!).

Topics of interest included the Intriguing “Governments & Industrial Security,” “Operational Excellence – the essential Driver of increased profitability, ” “What your DCS knows but wont tell you,” “Are Humans needed in a crisis,” “Getting results from Social Media,” “Establishing an effective plant cybersecurity program,” and, from John Barth of Apprion, “Turnrounds, Real Time and Beyond: How a wireless plant network changed the way we do turnarounds.”

To help people navigate what to attend of the dozens of sessions, ISA again used “Pathfinder” indicating the job function or professional goals who would have most interest particular areas or interests. These headings were Engineer, Technician, management, Acedemia, Marketing and this year for the first time Executive for those particularly interested in how Automation drives excellence and the bottom line.

Any of the sessions I attended rarely had less than about thirty attendees and some had many more.

Walt Disney: Lessons for Industrial Production

Lessons from Walt Disney!
Each day started with a keynote event and on the first day we were addressed by Greg Hale, who is Chief Safety Officer and VP at Walt Disney. He is responsible for the safety of cast members, as staff are called and millions of visitors at the various Walt Disney parks and resorts throughout the world. Despite the name of Walt Disney’s most famous creation it was quite obvious that his organisation was certainley no “Mickey Mouse”organisation. He pointed out that this was due to Walt Disney’s “keys to success,” the four critical areas every employee learns to prioritise that lead to the company’s global reputation for excellence. The keys are “safety, courtesy, show and efficiency,” and he pointed out they ought mean as much to running a sustainable plant as they do to selling Mickey Mouse.

The second day there was an open discussion on the Future of Automation an intriguing insight into the views of suppliers, consultants and end-users into where our profession is or ought to be going. This panel included Invensys Operations Management CEO Michael Caliel, Chet Mroz, CEO Yokogawa America, and Wolfgang Morr, General Manager of NAMUR.

Finally on day three, Travis Capps, VP of Energy & Gasses at Valery Energy Corporation reinforced the oft expressed opinion becoming more and more real to us, “It’s not business as usual anymore.”

Dick Morley surrounded by disciples

Lessons from the Master!
An abiding memory for us was the “Fireside Chat” session with the “Father of the PLC,” Dick Morley, on Tuesday evening. Morley’s Chat offered attendees a rare opportunity to sit and talk with one of automation’s best known legends, a leading visionary in the field of advanced technology development and an inventor who holds more than 20 technology patents. I will hold the sight of “Father” Morley surrounded by a phalanx of devotees like a Greek philosopher of old holding his disciples enthralled with his wisdom. Long may he continue to do so!

Where were the big boys?
We’ve talked about the strengths but of course there were drawbacks and deficiencies too. I suppose the weakest point was the “Solution Providers’ Showcase.” This was the exhibition area and the main problem here was the size of the hall. It was too big for what was on display. The displays and the opportunity to meet stand personnel were good and the delegates were happy enough from what we could ascertain from visitors. The organisation allowed for a large gap in presentations in the middle of the day for eats and networking on the floor. But where oh where were the big solution providers? Where was ABB? Where was Emerson? Where was Rockwell? Where was Endress & Hauser? Where was Yokogawa? Yes some of them provided speakers but unless one attended those particular sessions how could one know?

Siemens were there however and the ISA Partners, Honeywell, Invensys, Cooper Bussman, Maverick, A3 Controls, Fluke and OSIsoft. I was a little disapointed too in the number and variety of tweets eminating from the event using the hashtag #ISAutowk, comparing it, perhaps unfairly, to company sponsored events.

A really busy stand was the ISA Book Store which seemed to be throbbing with activity anytime I passed it and included several new Books still warm from the printing presses.

50 Years of ISAT

This was my last year as ISA Publications Department VP and it was a particular honour for me to present awards on behalf of the Department to the eminent and learned authors. The 5oth birthday of ISA Transactions, the Journal of Automation was also marked. Dr Russ Rhinehart, immediate past Editor, gave a run down on the journal and how it anticipated so many trends and development in the field over the last fifty years and also the emergence of many of the papers from outside of the USA, demonstrating the true international or global reach of the profession. He then cut the Birthday cake. Fire restrictions forbade the burning of fifty candles!

Show Daily from Automation.Com & InTech
Day 1    Day 2    Day 3

The show daily newsletter was published on line each day as last year by InTech, ISA’s magazine and automation.com. This will help get a flavour of the show “as it happened!”

Speaking with ISA Executive Director, Pat Gouhin, while not alluding to its weaknesses confirmed our own view,  “We’ve had an incredible week, with dozens of true legends in their fields sharing their knowledge and insights with a motivated, excited group of attendees.”  This enthusiasm was clear in a comment by a Nigerian delegate “ISA Automation Week has been a stimulating, friendly, learning-intensive event.”  And a tweet (#isautowk)  as everybody was heading home on the last day said “Always learning!” This feature, “Learning,” was echoed again and again by delegates so much so that it could be described as a motif for the event.

This is the third year of Automation Week and hopefully ISA will be able to tweek the changes to ensure a fully successful and exciting event on all fronts in Nashville Tennessee USA for 2013.

Technical Programme Overview!

• “Mickey Mouse Event” This expression refers to something that is small and not too bright, like a mouse. No relation to the Disney Corp.

This report was quoted in the October issue of Industrial Automation & Process Control Insider as follows:

“Eoin O’Riain, of Read-out.net, now in his last year as ISA Publications Department vp, recently reported on the ISA Automation Week, held in Orlando, Florida. The strength of this ISA event was in the technical programme. Peter Martin of Invensys and Alison Smith of Aspen organized a worldclass conference covering the latest and hottest topics in automation and control across several technical tracks. Under the Operational Excellence Tracks these were Control Performance, Asset Performance, Human Performance and Safety/ Environmental: the Technology Excellence Tracks included Wireless, and a hot topic: Security.

On the second day there was an open discussion on the Future of Automation, with a panel that included Invensys Operations Management ceo Michael Caliel, Chet Mroz, ceo at Yokogawa America, and Wolfgang Morr, general manager of NAMUR.

The weakest aspect of the event was the “Solution Provider’s Showcase”, an exhibition hall for commercial sales booths, that was just too big, with no attendance from suppliers like ABB, Emerson, Rockwell, Endress+Hauser and Yokogawa. Those present, like Siemens, and ISA partners Honeywell, Invensys, Cooper Bussman, Maverick, A3 Controls, Fluke and OSIsoft had the full attention of the delegates.

As one delegate from Nigeria commented, the week was a “learningintensive event”: reflecting the ISA strength in ‘Training and Dissemination of Knowledge’”


Follow

Get every new post delivered to your Inbox.

Join 32 other followers