Sink or swim? Drowning under too much info!

16/06/2017

Rachel Cooper, category marketing manager – field services with Schneider Electric on managing the Big Data Flood.

The Internet of Things (IoT) is constantly in the news. That’s understandable since forecasts anticipate that there will soon be tens of billions of connected devices, helping the IoT sector to generate more than £7.5 trillion worth of economic activity worldwide. In fact, according to McKinsey Global, the IoT economic impact on factories, retail settings, work sites, offices and homes could total as much as £3.55 trillion by 2025.

Oil refinery control room screen

One area where the IoT is driving development is in smart buildings. Today’s more complex buildings are generating vast quantities of data, but building management systems (BMS) are not leveraging that data as much as they could, and are not always capturing the right data to make useful decisions. With 42 per cent of the world’s energy consumed by buildings, facility managers face escalating demand for environmentally friendly, high-performance buildings that are efficient and sustainable.  The data collected can help them to achieve this.

However, many facility managers lack the time and resources to investigate the convenient methods that can help them to turn the flood of IoT and other sensor data they’re exposed to, into actionable insights

Forced to do more with less 
Reduced budgets force building owners to manage sophisticated building systems with fewer resources. This issue is further aggravated by older systems becoming inefficient over time. Even when there is sufficient budget, it is increasingly difficult and time-consuming to hire, develop, and retain staff with the skills and knowledge to take advantage of BMS capabilities.

Facility managers also face challenges maintaining existing equipment performance. Components can break or fall out of calibration, and general wear and tear often leads to a marked decline in a building’s operational efficiency. Changes in building use and occupancy can contribute to indoor air-quality problems, uncomfortable environments, and higher overall energy costs. These changes begin immediately after construction is complete.

Owners often undertake recommissioning projects to fine-tune their buildings. Such work is intended to bring the facility back to its best possible operation level. However, recommissioning is often done as a reactive measure, and traditional maintenance may not identify all areas of energy waste. Operational inefficiencies that are not obvious, or that do not result in occupant discomfort, may go undetected.

Upskilling the current workforce
Many tools have come onto the market over the past decade to help employees get a better understanding of their facilities and assist them in their day-to-day operations and long-term planning. This can include anything from dashboards and automated analytics platforms to machine-learning optimisation engines. However, much like the sophisticated BMS platforms available today, for each tool you deploy, more investment is needed in time for training. In fact, research shows that lacking training is evident with roughly only 20 per cent of facility managers using 80 per cent of capabilities available to them within their BMS. The remaining 80 per cent use a very limited amount (20 per cent) of the potential functionality in their system.

With personnel turnover and competing facility-management responsibilities, many facilities are left without staff who have the time to learn the full capabilities of these tools. Of course, outsourcing different functions is one way to overcome these issues. However, vendors must be managed closely to ensure efficacy, and to ensure that outsourcing costs do not accrue significantly as third parties spend more time on-site.

In tech we trust
Technology has become an important part of building management, as BMS play an ever bigger role in how facility managers perform their jobs and operate buildings. Newer technologies like data visualisation dashboards let facility managers view building performance metrics in a single window, helping them to spot trends and gather insights. By visualising data in terms of graphs, charts, and conversion to different equivalents – for example, kWh to pound cost or kWh to carbon footprint, an experienced building operator can manually identify areas of concern for closer inspection.

Yet, while dashboards can be helpful in determining building behaviour, the data is often complex and challenging to interpret. In fact, even if building staff have the time and skills to review and understand the data, dashboard information alone tells only part of the building performance story. Facility managers can identify where inefficiencies exist but usually not why. This requires additional troubleshooting and investigation. Therefore, dashboards are most effective for simple monitoring in environments where there are plenty of trained staff to perform troubleshooting and identify the root causes of issues.

Analytics is the answer 
To gain more from a BMS deployment, many facility managers are turning to data analytics software to interpret large volumes of BMS data. Best-in-class software automatically trends energy and equipment use, identifies faults, provides root-cause analysis, and prioritises opportunities for improvement based on cost, comfort and maintenance impact. This software complements BMS dashboards because it takes the additional step of interpreting the data – showing not just where but why inefficiencies occur. Engineers can then convert this intelligence into “actionable information” for troubleshooting and preventative maintenance, as well as for solving more complicated operational challenges. 

Using this software, facility managers can proactively optimise and commission building operations more effectively than with a BMS alone. It enables them to understand why a building is or isn’t operating efficiently so that they can introduce permanent solutions rather than temporary fixes. For instance, with data analytics, facility managers can proactively identify operational problems such as equipment that needs to be repaired or replaced. Moreover, it can do this before critical failure and before it has an impact on the building occupants. Repairs can be scheduled before an emergency arises, eliminating costly short-notice or out-of-hours replacement and avoiding failure and downtime. With this proactive approach, equipment becomes more reliable, the cost of replacement and repair can be much lower, and occupants are assured of optimal comfort. In fact, by following best practice, they can even reduce HVAC energy costs by up to 30%.

The Future
Smart, connected technology has taken us beyond the human ability to manage what can amount to hundreds of thousands of data points in large buildings. Efficient operations require a proactive response. Analytics solutions effectively manage the new state of information overload created by a digital world and filter out what’s not valuable to you. For example, they can provide insight on how to fix problems when they are first observed, before total failure. This predictive maintenance approach means capital assets can be preserved and significant energy savings can be made. The advent of IoT means that we must shift our approach to facility management in order to deliver against the financial, wellbeing and sustainability targets of today’s facilities. By investing in a sophisticated BMS, users can uncover which data to ignore and which to act upon. After all, data for data’s sake is useless. Being able to use a building’s performance data to augment operational efficiency, increase occupant comfort, and improve overall energy consumption so that the financial well-being of buildings can be sustained, is of paramount importance.

@SchneiderElec #PAuto #IoT

Crossing the river – and how!

30/05/2017
This one of those stories which we wonder should we post or not as it is hardly strictly process automation or test & measurement. We have decided to include it because it is technologically interesting as well as an innovative application.

Since 19 November urban mobility in the Breton city of Brest (F) has been boosted by two cable cars carrying up to 60 people who travel more than 400 meters above the River Penfeld, with a power consumption that is potentially close to zero. Supported by Leroy-Somer (now part of Nidec Corporation) , the companies Bartholet France and Seirel are behind this achievement which is a world first in terms of technology.

Brest Métropole wants to refocus the city over the banks of the River Penfeld. The cable car system is aimed at strengthening the trade links between both sides of the river. With a range of 420 meters it links the city center with the new Capucins district, which has been built on 16 hectares of former military grounds. The structure designed in accordance with original and innovative technology where the two lines cross over each other via a “flyover” system is a first internationally. The two cable cars cross over each other instead of passing each other at the same level as traditional cable cars do, and they then arrive at the same platform. The scale of the system and the stations, including the ground required, are reduced as a result, thereby also resulting in a reduction in overall civil engineering costs. This is a particular benefit in an urban environment where space is limited. This innovative approach enabled preservation of the Capucins station building, which is protected as a national historical monument. As such the cable cars cross one single steel pylon which integrates into the surrounding environment of dockyards and their cranes. Each car is attached to two carrying cables 50mm in diameter stretched to 88 tones. The counterweight effect generally observed on mountain installations is avoided as the cable cars move simultaneously over most of the route.

Low power consumption
One of the challenges posed by Brest Métropole involved implementing a solution with low power consumption. The idea was therefore to recover the braking energy, but the energy operators have not yet systematically developed the full potential for reinjection of current into their network. The legislative framework provides for this, for solar energy production for instance, but certainly does not do this when the system consumes and reinjects current over very short cycles, as is the case in Brest. The solution therefore consisted in storing energy in super capacity batteries when the cable cars are descending, in order to then reuse this energy for the subsequent ascent.

The project was awarded to Bartholet France for the cable car system, and to Seirel, an expert in electrical equipment and safety automation, for the transportation via cable. “We made contact with several suppliers, and only Leroy-Somer had the experience with this type of application, and was also able to provide all of the electromechanical components”, explains Thomas Savin, project manager for Seirel Automatismes.

The IMfinity LC motor from Leroy-Somer drives the traction cables.

The heart of the system, i.e. the drive for the traction cables, is driven by two latest generation Leroy-Somer IMfinity LC 315 asynchronous motors (300kW, 1500rpm, 460V) with liquid cooling, assembled as master-slave on the same shaft. This installation provides the additional option of double redundancy since just one of the two motors is enough to continue operations in degraded mode (low speed). The motors are controlled by two Leroy-Somer Powerdrive MD2S inverters, which are in turn supplied by Powerdrive MD2R active front-end rectifiers connected to the power network. A DC converter, also from the Leroy-Somer range, enables management of the operations for the M65V385F supercapacitors developed by Blue Solutions (Bolloré Group). The supercapacitors have been specially designed to meet the needs of industrial applications requiring high power ratings. Meeting the most demanding functional specifications, they charge and discharge in just a few seconds and provide service lives of several hundred thousand cycles.

“This achievement would not have been possible without Leroy-Somer’s expertise in project engineering”, says Guillaume Bourgoint, marketing applications manager for Leroy-Somer. “Through relying on a huge range of motors and variable speed drives based on different technologies, we are able to offer our clients custom solutions in terms of drive and automation systems. As such, linking the IMfinity LC motor, characterized by silent power, with the Powerdrive MD2 inverter, with custom power, seemed like the obvious solution to us given the specifications and constraints of the application”.

“We appreciated Leroy-Somer sharing its expertise and helping us during the project design phase with its solution-based approach and experience. What’s more, having just one single point of contact responsible for all of the moving components was the perfect guarantee for us in a project as groundbreaking as this one. We specifically wanted one single supplier for the motors and their controls. We have traditionally used a different brand of converter, but configuring the Powerdrive MD2 from Leroy-Somer turned out to be child’s play”, adds Thomas Savin.

In the event of network loss, an emergency mode using an electric generator with a LSA 44.3 low voltage alternator, also manufactured by Leroy-Somer, enables the cable cars to be returned to the stations. Safety has been reviewed right down to the last detail in order to ensure protection against any eventualities.

“This is the first time a cable car system has included an energy recovery solution with batteries. This achievement is a direct reflection of our company, which is able to position itself on more complex engineering projects, and will no doubt be an inspiration for other projects around the globe”, explains Nicolas Chapuis, Managing Director at Bartholet France.

Silent and compact
“Another challenge in the project was that the area available for installing the motors was in the immediate proximity of the passengers. The project’s groundbreaking industrial design meant that the motors are just a few centimeters behind a glass cabinet visible to users. The equipment therefore had to be silent and compact for the purposes of the site ergonomics and for passenger comfort. Once again Leroy-Somer stood out against the competitors in this area too with its IMfinity LC motor solutions”, adds Nicolas Chapuis.

With liquid cooling, the IMfinity LC asynchronous motors are up to 25% more compact than a motor cooled using air with equivalent power. Their sound level is also reduced by 10 to 20 dB, thereby enabling optimum acoustic discretion. This benefit is explained by the efficiency of the cooling circuit which surrounds the motor system entirely. Its dependable design and Premium IE3 energy efficiency make it one of the most accomplished motors in the IMfinity range. “The LC series, available from 150kW to 1.5MW, is ideal for all cases where the motor is close to the operators or users of the application. It meets the increasingly urgent need for acoustic comfort related to working equipment for teams in workshops or for users located nearby”, explains Guillaume Bourgoint.

Significant benefits
The route for this cable car system is particularly suitable for an energy recovery system, as it is implemented initially during ascent and then during descent, with the departure and arrival points both being at an equivalent altitude. Energy is consumed in order to arrive at the line’s summit point. Once this point has been crossed, the descent phase constitutes a source of braking energy that can be reinjected into the system in order to supply the ascent once again, thereby resulting in a very significant reduction in energy costs.

“This achievement could potentially be used as an example for other industrial applications, such as for lifting”, explains Thomas Savin. “The theoretical energy savings amount to more than 90%, but the main obstacle today relates to the supercapacitors. Here we sized them in order to store around half of the energy required, and this itself represents an investment of 200,000 euros. This cost will probably fall rapidly in the near future”.

A porthole provides the braver passengers with a vertical view of the cable car’s route!

@Leroy_Somer #PAuto #France #Transport


Is AI all it is cracked up to be?

28/03/2017
In this article, Stephen Parker, CEO of Parker Software, examines whether artificial intelligence is all it’s cracked up to be.

If planet Earth had been created one year ago, the human species would be just ten minutes old. Putting this into context, the industrial era would have kick-started a mere two seconds ago. Thanks to human influence, the pace of technological advancement on Earth is astonishing. However, we are already on the verge of the next change. The potential of artificial intelligence has been discussed by scientists since the 1950s and modern technological advances are finally bringing this technology to the masses. 

Research suggests that artificial intelligence could be as ‘smart’ as human beings within the next century. Originally, human programmers were required to handcraft knowledge items painstakingly. Today, however, one-off algorithms can teach machines to take on and develop knowledge automatically, in the same way a human infant would. Artificial intelligence has reached a critical tipping point and its power is set to impact every business, in every industry sector.

Already, 38 per cent of enterprises are using artificial intelligence in their business operations and this figure is set to grow to 62 per cent by 2018. In fact, according to predictions by Forrester, investments in artificial intelligence technology will increase three-fold in 2017. These figures mean that the market could be worth an estimated $47 billion by 2020. 

Intelligent assistance
One of the most notable applications of AI from the past few years is the creation of intelligent assistants. Intelligent assistants are interactive systems that can communicate with humans to help them access information or complete tasks. This is usually accomplished with speech recognition technology; think Apple’s Siri, Microsoft’s Cortana or Amazon’s Alexa. Most of the intelligent assistants that we are familiar with today are consumer facing and are somewhat general in the tasks they can complete. However, these applications are now making their way into more advanced customer service settings.

While there is certainly a space for these automated assistants in the enterprise realm, there is a debate as to whether this technology could fully replace a contact centre agent.

Automation is widely recognised as a valuable tool for organisations to route the customer to the correct agent. However, completely handing over the reins of customer management to a machine could to be a step too far for most businesses. Even the most advanced AI platforms only hold an IQ score equivalent to that of a four-year-old, and naturally, businesses are unlikely to entrust their customer service offering to a child.

The human touch
Automated processes are invaluable for speeding up laborious processes and completing monotonous customer service tasks. But as any customer service expert will tell you, the human touch is what elevates good service to an excellent experience for the customer. Simple tasks will no doubt be increasingly managed and completed using automation and AI-enabled agent support systems, whereas complex issues will still require the careful intervention of a human agent.

During a TED Talk on artificial intelligence, philosopher and technologist Nick Bostrom claimed that “machine intelligence is the last invention that humanity will ever need to make.” However, contact centre agents needn’t hang up their headsets just yet.  Artificial intelligence won’t be replacing the call centre agent any time soon. The only guarantee is that the role of a call centre agent will continue to evolve after all, the industrial revolution was only two seconds ago.

@ParkerSoftware #PAuto

It IS rocket science!

13/03/2017

Graham Mackrell, managing director Harmonic Drive, explains why its strain wave gears have been the top choice in space for over forty years.

Anything that goes into space is seen as the pinnacle of human creation. Astronauts are highly trained and are at the peak of physical fitness, space shuttles are crafted by large teams of expert engineers and all the technology used is so high-tech it’s as if it belongs to science fiction.

Driving on Mars!

Many decades ago, the first Harmonic Drive gears were sent into space during the Apollo 15 mission. Even from the beginnings of the space race, the expectations for the technology used were high. The equipment used in space had to be reliable, compact and lightweight and given the increasing demands on equipment in today’s space missions, it must also now be highly accurate with zero backlash and have high torque capacity.

When aerospace engineers were recently designing a new space rover, they looked to Harmonic Drive gears for reliability. Due to the obvious difficulties of performing repairs in space, a high mean time between equipment failures is a high priority. Harmonic Drive products achieve this by prioritising quality throughout the entire design and manufacturing process.

It is vital that aerospace gears are thoroughly tested before they are sent to customers, ensuring that they always receive a quality product. At Harmonic Drive, we test products using finite element method (FEM) testing. This process simulates real world physics to ensure that the product is capable of surviving in space. For example, structural testing is carried out to ensure the product is robust and the space rover travelling over rough terrain will not damage the actuators used in the wheels. Thermodynamic properties are also important as aerospace gears are often exposed to both extremes of the temperature range, which are tested in the initial design process.

Also considered in the design process is the part count of the aerospace gears. Harmonic uses a low part count which means that they are maintenance free. In addition, there is a lower chance of components failing giving the gears a high Mean Time Between Failure (MTBF). This also contributes to the compactness and light weight of the gears, a feature essential in space.

Another key feature for aerospace gears is high torque capacity and zero backlash. This is essential for systems which communicate the location of the rover to the control room. If traditional, high backlash gears were to be used, the system would misreport the rover’s location. This would cause problems when the rover is used to survey uncharted areas of planets and could lead to inaccurate mapping. Due to the emphasis on high precision with Harmonic Drive gears, this problem can be avoided.

The numerous quality processes that Harmonic Drive undertakes have led to recognition from a number of accrediting bodies. Harmonic Drive products are AS9100 certified, a specific aerospace standard for the design, manufacture and sale of precision gear reducers, servo-actuators and electro-mechanical positioning systems.

To be the pinnacle of global technology, there are no shortcuts. Components used in aerospace technology must be subject to vigorous testing in order to be reliable, safe and have a long product life.

• The MARS adventure: The NASA site.
@HarmonicDriveUK #PAuto #Robotics @StoneJunctionPR

Cybersecurity pitfalls!

09/03/2017

Jonathan Wilkins, marketing director of obsolete industrial parts supplier, EU Automation discusses three cyber security pitfalls that industry should prepare for – the weaponisation of everyday devices, older attacks, such as Heartbleed and Shellshock and vulnerabilities in industrial control systems.

IBM X-Force® Research
2016 Cyber Security Intelligence Index

In 2016, IBM reported that manufacturing was the second most cyber-attacked industry. With new strains of ransomware and other vulnerabilities created every week, what should manufacturers look out for in new year?

‘Weaponisation’ of everyday devices
The advantages of accessing data from smart devices include condition monitoring, predictive analytics and predictive maintenance, all of which can save manufacturers money.

However, recent attacks proved that these connected devices can quickly become weapons, programmed to attack the heart of any business and shut down facilities. In a recent distributed denial of service (DDOS) attack, everyday devices were used to bring down some of the most visited websites in the world, including Twitter, Reddit and AirBNB.

Such incidents raise a clear alarm signal that manufacturers should run their production line on a separate, highly secure network. For manufacturers that use connected devices, cyber security is even more important, so they should conduct regular cyber security audits and ensure security protocols are in place and up-to-date.

Don’t forget the oldies
According to the 2016 Manufacturing Report, manufacturers are more susceptible to older attacks, such as Heartbleed and Shellshock. These are serious vulnerabilities found in the OpenSSL cryptographic that allows attackers to eavesdrop on communications and steal data directly from users.

Industrial computer systems generally aren’t updated or replaced as often as consumer technology, which means that some still have the original OpenSSL software installed. A fixed version of the programme has since been released, meaning that manufacturers can avoid this type of attack by simply updating their system.

Keeping industrial control
Manufacturers understand the need to protect their networks and corporate systems from attacks, but their industrial control systems also pose a risk. If an attacker deploys ransomware to lock down manufacturing computers, it could cause long periods of downtime, loss of production and scrap of products that are being made when the attack happens.

This is particularly true in the era of Industry 4.0, where devices are connected and processes are automated. One of the most effective means of safeguarding automated production systems is cell protection. This form of defence is especially effective against man-in-the-middle attacks, whereby the attacker has the ability to monitor, alter and inject messages in a communications system.

In its report, IBM also stated that cyber security awareness in the manufacturing industry is lower than other sectors. The truth is that any company can be the target of a cyber attack. The only way to avoid a cyber security breach is by planning ahead and preparing for the unexpected.

#PAuto @StoneJunctionPR @IBMSecurity

Communication analysis: Industrial Ethernet & Wireless v Fieldbus.

06/03/2017

Industrial Ethernet and Wireless growth is accelerated by the increasing need for industrial devices to get connected and the Industrial Internet of Things. This is the main finding of HMS Industrial Networks’ annual study of the industrial network market. Industrial Ethernet now accounts for 46% of the market (38 last year). Wireless technologies are also coming on strong, now at 6% (4) market share. Combined, industrial Ethernet and Wireless now account for 52% of the market, while fieldbuses are at 48%.

Fieldbus vs. industrial Ethernet and wireless
HMS’s estimation for 2017 based on number of new installed nodes in 2016 within Factory Automation. The estimation is based on several market studies and HMS’s own sales statistics

HMS Industrial Networks now presents their annual analysis of the industrial network market, which focuses on new installed nodes within factory automation globally. As an independent supplier of products and services for industrial communication and the Internet of Things, HMS has a substantial insight into the industrial network market. Here are some of the trends they see within industrial communication in 2017.

network-shares-according-to-hms-2017-jpg_ico500
Industrial Internet of Things is boosting Industrial Ethernet growth
According to HMS, industrial Ethernet is growing faster than previous years, with a growth rate of 22%. Industrial Ethernet now makes up for 46% of the global market compared to 38% last year. EtherNet/IP and PROFINET are tied at first place, with PROFINET dominating in Central Europe, and EtherNet/IP leading in North America. Runners-up globally are EtherCAT, Modbus-TCP and Ethernet POWERLINK.

Anders Hanson

Anders Hanson

“We definitely see an accelerated transition towards various industrial Ethernet networks when it comes to new installed nodes,” says Anders Hansson, Marketing Director at HMS. “The transition to industrial Ethernet is driven by the need for high performance, integration between factory installations and IT-systems, as well as the Industrial Internet of Things in general.”

Wireless is redefining the networking picture
Wireless technologies are growing quickly by 32% and now accounts for 6% of the total market. Within Wireless, WLAN is the most popular technology, followed by Bluetooth. “Wireless is increasingly being used by machine builders to realize innovative automation architectures and new solutions for connectivity and control, including Bring Your Own Device (BYOD) solutions via tablets or smartphones,” says Anders Hansson.

Fieldbus is still growing, but the growth is slowing down
Fieldbuses are still the most widely used type of networks with 48% of the market. Fieldbuses are still growing as many users ask for the traditional simplicity and reliability offered by fieldbuses, but the growth rate is slowing down, currently at around 4% compared to 7% last year. The dominant fieldbus is PROFIBUS with 14% of the total world market, followed by Modbus-RTU and CC-Link, both at 6%.

Regional facts
In Europe and the Middle East, PROFIBUS is still the leading network while PROFINET has the fastest growth rate. Runners up are EtherCAT, Modbus-TCP and Ethernet POWERLINK.
The US market is dominated by the CIP networks where EtherNet/IP has overtaken DeviceNet in terms of market shares.
In Asia, a fragmented network market is very visible. No network stands out as truly market-leading, but PROFIBUS, PROFINET, EtherNet/IP, Modbus and CC-Link are widely used. EtherCAT continues to establish itself as a significant network, and CC-Link IE Field is also gaining traction.

More and more devices are getting connected
“The presented figures represent our consolidated view, taking into account insights from colleagues in the industry, our own sales statistics and overall perception of the market,” says Anders Hansson. “It is interesting to see that industrial Ethernet and Wireless combined now account for more than half of the market at 52%, compared to fieldbuses at 48%. The success of a series of industrial Ethernet networks and the addition of growing Wireless technologies confirms that the network market remains fragmented, as users continue to ask for connectivity to a variety of fieldbus, industrial Ethernet and wireless networks. All in all, industrial devices are getting increasingly connected, boosted by trends such as Industrial Internet of Things and Industry 4.0. From our point of view, we are well-suited to grow with these trends, since HMS is all about ‘Connecting Devices.’”

 @HMSAnybus #PAuto #IoT

Changing bad gear oil habits.

28/02/2017
Here, Mark Burnett, VP of the Lubricants and Fuel Additives Innovation Platform at the water, energy and maintenance solutions provider NCH Europe, explores how businesses can improve the effectiveness of their gear oil.

Benjamin Franklin once said, “it is easier to prevent bad habits than to break them.” This rings true for the industrial sector, where it is easier to form a habit of good predictive maintenance than to recover from machinery breakage or downtime.

nch_tan_lubricationHowever, this is easier said than done. Predictive maintenance requires constant vigilance in order to be effective, ensuring that maintenance engineers know when it is the right time to lubricate bearings, apply a rust-preventative coating or treat their water supply. These tasks will vary in frequency, so there can be a steep learning curve to getting it right.

Unfortunately, we all know that problems do not wait until you’re ready and, especially with gear oil changes, failure to get it right often leads to problems. Changing oil too soon, for example, leads to higher costs as more changes will be needed than necessary. Conversely, forgetting to change the oil at the right time increases the likelihood of machine damage and breakage, which itself leads to elevated operational costs.

Despite both extremes leading to increased business costs, only 20 per cent of oil changes happen at the right time. This is not surprising when considering the fact that many variables can determine how regularly oil needs changing. While many engineers may fill up a machine and expect it to require a change after a certain amount of time, it is actually the quality of the oil itself that must be measured.

This is understandably difficult without a comprehensive approach to industrial gear oil analysis. In order to reliably measure the quality of the oil and when a change is due, engineers must identify the quantities of external contamination and metal wear, as well as the general condition of the oil.

For example, oxidation is a naturally occurring process that affects oil over time. In the presence of oxygen, the oil begins to break down and this reduces the service life of the oil itself. In addition to this, it also produces sludge that makes equipment work harder and drives up operation costs.

If left long enough, the acidity of oxidised oil will steadily increase and result in corrosion and pitting. While this is problematic if left for extended periods of time, this acidity allows more accurate assessment of oil condition. By measuring increases in the system’s total acid number (TAN), maintenance engineers and plant managers can identify when the oil acidity is reaching the maximum acceptable level and act accordingly.

However, TAN only accounts for one part of overall gearbox system condition and there are many other considerations such as the operational health of the machinery itself. It is crucial that engineers consider all aspects to ensure optimum performance.

To this end, NCH Europe has developed the NCH Oil Service Program (NOSP) to help businesses keep their machinery in working order and their oil changes timely. Samples of gear oil are analysed and user-friendly reports are generated so that plant managers can see accurate results at a glance, giving a clear overview of equipment condition and the TAN of the oil.

Accurate analysis helps to prevent engineers falling into the bad habit of incorrect oil management. By combining this insight with an effective cleaning solution and a suitable gear oil, further bad oil-change habits and breakages can be kept at bay.

@NCH_Europe #PAuto