Permission to change and develop in the Life Sciences!

20/06/2017
• Enjoy a unique environment to meet and gain input from all stake holders on industry direction, challenges and solutions.
• Shape your strategy on the way solutions should be developed and applied in your facility
• Understand how partnering can take you further, faster and with reduced risk
• Experience hands on demonstrations of automation equipment and packages.

The invitation was interesting, and challenging. “Future.Now – Developing the Life Sciences Landscape Together” was an arresting title. It was a co-operative event between National Institute for Bioprocessing Research and Training (NIBRT) and Emerson. We were invited to “Boost your knowledge, gain from the experience of others and increase your professional network at NIBRT state of the art facility in Dublin!”

Mike Train, Executive President with Emerson explains their focus under the attentive eye of European President Roel Van Doren.

This correspondent was aware of the NIBRT facility but had very little idea of what it was real function or its relevance to Irish industry. This was an opportunity find out. Further looking through the programme two things became apparent. One was the calibre of personnel speaking from the Emerson organisation and then the application rather than product orientation of the various sessions.

It proved to be a very interesting two days.

Day 1: Working together towards a common future.
Presentations from NIBRT, Industrial Development Authority (IDA), GSK, Alexion, Zeton, Novo Nordisk and Emerson Automation Solutions.

Pharma v Biopharma

After a short welcome fro Emerson Europe President, Roel Van Doren, the CEO of NIBRT, Dominic Carolan, outlined the foundation and raison d’etre of the organisation. It is a training and research in the area of bioprocessing. It is located in a new, world class facility in Dublin (IRL). As medical science advances “simple” chemistry, while still essential, is not fully capable of solving all health issues – Pharma versus Biopharma. Bioprocessing is a specific process that uses complete living cells or their components (e.g., bacteria, enzymes, chloroplasts) to obtain desired products.

Thus this facility exists to support the growth and development of all aspects of the biopharmaceutical industry in Ireland. It is purpose built to closely replicate a modern bioprocessing plant with state of the art equipment.

Making Ireland ready – a good news story.
Dr Chantelle Keirnan, Scientific Advisor with the Industrial Development Authority (IDA), described the far-seeing intuitive initiative to look at bioprocessing “before it was profitable or popular!” This state body is responsible for the attraction and development of foreign investment in Ireland and had been extraordinarily successful in attracting nine of the top ten pharma companies to set up manufacturing processing plants in Ireland. They considered at the turn of the century that bioprocessing was the way that life science was going and took steps to ensure that Ireland was ready. One of those steps was the provision of Government funding of NIBRT.

Togged out for the tour

Many of the delegates – in excess of one hundred attended some from other countries – donned white coats and took the opportunity to tour the impressive facility during the event. It includes a purpose-built, multi-functional building which replicates the most modern industrial bioprocessing facility. Some idea of this facility may be gleaned from their website here.

This is a good news story. How often are decisions of state organisations regarded, not entirely without justification, with a jaundiced eye? Those that are good are “oft interréd with their bones!” The vision that saw this development in industry and the individuals who having caught the ball ran with it and brought it so successfully to fruition is worthy of equal attention and praise.

The rest of the day was an examination of the industry, processes and looking into the future. Mike Train, Executive President of Emerson spoke on the changes that are influencing industry and his company’s focus. We are facing “an evolution not a revolution” he stated, a point emphasised by other speakers throughout the day. He also stressed the importance for giving permission to change. (See full list of speakers at below.)

Pictures from the event!

We then had a series of speakers from the industry, people who get their hands dirty so to speak in actual processing speaking of their experiences and challenges. Speakers from GSK and Novo Nordisk explored areas like partnership, legacy issues, building on or expanding existing plants, saving energy, wireless. There was some discussion on the cloud and its advantages and just how vulnerable it might be to security breaches.

The discussion on handling all this data and identifying and retrieving those pieces of data which are really useful to the process brought to mind the prophetic words of the American media theorist, Neil Postman years ago, “…a central thesis of computer technology – that the principal difficulty we have in solving problems stems from insufficient data – will go unexamined. Until, years from now, when it will be noticed that the massive collection and speed of light retrieval of data have been of great value to large scale organisations but have solved very little of importance to most people and have created at least as many problems for them as they have solved…” (Neil Postman: “Amusing ourselves to death:” 1985)

Peter Zornio, Chief Technology Officer with Emerson gave their philosophy in meeting the demands of “Life Science Visions.” He lauded the various discussion groups such as the Biopharma Operations Group in helping how to keep up to date with technology and fostering new ideas.

We are on a digitizing journey. Moving from manual and paper to digital recording and control.

Day 2: “New Technology, New Processes, New solutions!”
Presentations from BioPharmaChem, GSK, Infinity Automation and Emerson.

The day started with a presentation on modular flexible manufacturing – introducing the PK Controller and a little later in the day there was an exposition on DeltaV Discovery/DeltaV 14 in maintaining data and transferning and easing technology transfer through the life cycle of drug development.

In his second presentation Peter Zornio gave the business case behing IIoT. IoT is usually referring to domestic, building environment and other civil applications. But it is also useful in the industrial environment where it is referred to as IIoT. Initially it was a link up at the instrument and control area but of late it is spreading to the portfolio of sensors. Their emphasis is on “the first mile!” (This is a backward reference to the perennial problem in many, especially rural, areas of “the last mile” – the internet connection directly into the home! – a heart felt sigh from your correspondent!)

The Real Challenges!

Ian Allen of Infinity Automation spoke on challenges to the life science automation world. “Don’t go backward to go forward” he said. We must use things like data integrity, cyber security, Microsoft dependencies and Industrie 4.0 as “gifts to leverage the opportunity and change!” The real challenge is not so much the technology but our use of it. We were coming back to “permission for change!”

We might perhaps use the words of the Bard of Avon, “The fault, dear Brutus, is not in our stars. But in ourselves….”  The “gifts” are there. The Technology is there or on the way.

Let’s own these gifts and make them our own.

 

Pic: Travis Hesketh


The Speakers:

Day 1
Dominic Carolan
CEO – NIBRT
Dominic Carolan was appointed CEO of NIBRT in April 2015. Mr. Carolan previously held senior roles in Mallinckrodt (Dublin), Genzyme (Waterford), also Genzyme (Corporate) where he was Senior Vice President of Manufacturing, and in Sanofi, where he headed their global network of Sterile Injectable Lyophilisation sites. He has successfully lead the startup of two significant Pharma & BioPharma facilities in Ireland and has a proven track record in operations leadership and in attracting and developing the talent required to deliver long term success. A graduate of UCD in Chemical Engineering, Mr. Carolan was Chairman of BioPharmaChemical Ireland from 2008-2010.
Dr Chantelle Kiernan
Scientific Advisor – IDA

Dr. Chantelle Kiernan joined IDA in September of 2009 and is responsible for attracting research related foreign direct investment for Ireland. Chantelle has responsibility for the Multinational research portfolio – spanning Pharmaceutical, Biotechnology, Medical Device, Engineering Food services industries. Chantelle has spent her career equally dispersed between academia and industry. She holds a PhD in Immunology from Trinity College Dublin in the area of immunomodulation and continued her academic career with a Post-Doctoral fellowship in Harvard University, Boston. Chantelle is currently undertaking an MSc in International Business law. She has spent almost fifteen years in industry. In her current role as Scientific Advisor for the IDA, she has been integrally involved in attracting and securing large scale R&D foreign direct investments for Ireland.

Mike Train
Executive President – Emerson Automation Solutions
Michael H. Train leads the Automation Solutions business of Emerson, which posted sales of $10.2 billion in fiscal 2015. Train began his career with Emerson in 1991 as an international planner, then took on additional responsibilities in a number of executive posts that included serving as President of Emerson Japan and Korea, VP of Corporate Planning, President of Emerson Process Management Asia Pacific, and President of Emerson’s Rosemount business. He was most recently President of Global Sales for Emerson Process Management, responsible for sales, service, support, and customer satisfaction for all products and services across five world-area organizations. In that role he was also part of the leadership team that drove strategic initiatives and investments for the entire business group. Train earned a bachelor’s degree in electrical engineering from General Motors Institute and an MBA from the Johnson Graduate School of Management at Cornell University. He currently serves on the management school’s advisory council and was a 2008 Eisenhower Fellowship recipient.
Dave Tudor
Vice President, Head of GMS Strategy – GSK
Dave joined GSK in 1992 at Worthing as a PhD Chemist from Glasgow University. He has over 20 years’ experience with the company carrying out a number of Technical, Compliance and Manufacturing leadership roles. In 1997 he moved to Irvine to take up a lead chemist role before coming Quality Control Manager in 1998. He joined the site leadership team in 2001 to run Technical Development before moving to manufacturing as Actives Production Director in 2005. During this time he completed a Masters degree in Manufacturing Leadership at Cambridge University. In 2007 he moved to GSK House to work on a central network re-structuring project before becoming Site Director at Montrose in October 2008. At Montrose, he led the transformation of the site to manufacture over 12 products for GSK including a major investment programme. In 2011 he was appointed VP Primary Supply Chain with responsibility for global Active Pharmaceutical Ingredients (API) manufacture and supply, a network of GMS sites across the world including facilities in Asia and Europe. In 2017 he was appointed VP Head of GMS Strategy with responsibility for manufacturing strategy, deployment of strategic programmes, performance management and advocacy. He plays an active role with a number of Governments and is currently co-chair of the Life Sciences Scotland Industry Leadership Group. Dave is also a member of UK Chemicals Industry Association Council and Board. Dave is married with 4 children and lives in Troon, Ayrshire. He enjoys all sports, particularly football, is a keen reader of Scottish history and does cooking to relax.
Peter Zornio
Chief Strategic Officer – Emerson Automation Solutions
As Chief Strategic Officer for Emerson Automation Solutions, Peter has responsibility for overall coordination of technology programs, product and portfolio direction, and industry standards across the Automation Solutions group. He has direct responsibility for the product definition and development organizations for control systems and software products. He has been at Emerson for 10 years. Prior to Emerson, he spent over 20 years at Honeywell in a variety of technology and marking roles, most recently as overall product management leader. Peter holds a degree in Chemical Engineering from the University of New Hampshire.
Herman Bottenberg
Marketing Director,, Zeton

PDEng. Ir. Herman Bottenberg is a chemical engineer with 15+ years of industrial experience, along with two years of Post academic work on Plant Design. He worked for 17 years at Zeton B.V. in The Netherlands, with five years of experience in project engineering and project management. The last 12 years he has been active in business development, sales and marketing. Since 2016 Herman is also responsible for the Marketing and Sales group at Zeton B.V. Herman has specialised in transformation of processes from batch to continuous, process intensification and modular processing plants for pharma and chemical industry.

Day 2
 Matt Moran
Director – BioPharmaChem Ireland
Matthew Moran is Director of BioPharmaChem Ireland. He graduated in Chemistry at Trinity College Dublin in 1980 and in Chemical Engineering at University College Dublin in 1981; he holds an MBA also from University College Dublin (Smurfit School of Business). He worked for over ten years in the pharmaceutical industry where he held a number of management positions both in active ingredient and dosage form manufacture. He is a member the European Chemical Industry Council (CEFIC). Matthew Moran is a Board member of the Active Pharmaceuticals Ingredients (API) Committee of CEFIC (CEFIC/APIC) and The European Association for Bioindustries (Europabio) BioPharmaChem Ireland represents the interests of the biopharmachem sector in Ireland. CEFIC/APIC represents the European API Industry. Europabio represents the European Biotech Sector.
Ian Allan
Automation Consultant – Infinity Automation
Currently the Managing Director of Infinity Automation, a relatively new company carrying out Automation & MES Consultancy, Strategic Planning and Major Program/Project Health checks, with blue chip Global Life Science companies and Strategic vendors that support that Industry. Formerly Ian was the Global Head of Automation & MES with Novartis, where he was responsible for the Manufacturing Automation Strategy and MES Program within Technical Operations in the Vaccines division.  Prior to that he worked for GSK as Global Automation Director responsible for Automation, Process Control and MES across 73 sites worldwide. There he led a team that developed a library of Emerson DeltaV modules to be deployed in multiple Bulk API sites across the world, as well as developing a blueprint for MES integration and Network delivery of Electronic Batch Records. Prior to that he held several roles in GSK within the Engineering and Automation departments. Ian started his career with IBM as a junior engineer when computers were a little bigger than they are today and holds a BSc in Electrical & Control Engineering from Strathclyde University. He is currently facilitating GSK’s Global Automation Steering Team and is leading the Digital Factory Automation workstream for a new Hybrid Manufacturing platform with the first instance being delivered in GSK Singapore Jurong site.
Colin Chapman
Director of Manufacturing IT – GSK
Colin Chapman is a Chemical Engineer with nearly 20 years experience in Life Sciences with GSK. Colin’s career has spanned across process engineering & automation, operations and new product introduction in both commercial manufacturing and clinical supply chains. In his current role as Director of Manufacturing IT Colin has successfully led the introduction of Manufacturing Operations Management across the clinical supply chain driving business process re-engineering and global workflow automation using technologies such as Syncade. GSK’s continuing program focuses on three value drivers, Compliance, Business Intelligence and Productivity.
Klaus Erni
Product Manager & Namur 148 Board Member – Emerson Automation Solutions
Klaus started his Emerson career in 2003 in Germany, where he was working as a Technical Manager for Key Accounts before he transferred to Austin, TX to become the DeltaV Hardware Product Marketing Manager. In 2015, he went back to Europe and took over another Global Role, being now the Technical Consultant to some major Strategic Accounts. While in Germany with Emerson, he was responsible for the technical aspects of the DeltaV Systems during the Sales and Implementation Phase, as well utilizing the latest Hardware and Software features while upgrading and expanding Systems on Key Customer sites. Prior to Emerson, Klaus was with the Hoechst AG, he did several Engineering projects with various PLC and DCS and SIS Systems and was as well a RS3 System User.
Danny Vandeput
Director Pervasive Sensing Strategies – Emerson Automation Solutions
The (Industrial) Internet of Things (IIoT) is revolutionizing the way we live but it also provides many new challenges to the industry. This can create confusion, uncertainty – combined with fuzzy statements – and different opinions. My great passion is to bring clarity in the Industrial Internet of Things and what benefits it can bring for you. I help industries to find the right perception of IIoT, how sensors can maximize profit, reduce downtime and bring the ROI into the IoT. Being already 23 years with Emerson I have assisted many types of industries on their way to Top Quartile Performance. This includes amongst other trainings, workshops, audits and implementing solutions.
#PAuto @EMR_Automation @NIBRT_ #IIoT @HHC_Lewis

Interesting facts emerge from financial report.

15/05/2017
E+H reports sales flat, but sees growth in Ireland, reports Processingtalk.info‘s  Nick Denbow from Basel.

This year, Endress+Hauser expanded the presentation of their annual financial results, inviting journalists from not only Germany and Switzerland, but including others from Belgium, the Netherlands and Great Britain. In all 70+ attendees heard Klaus Endress and Matthias Altendorf say that the consolidated Group sales fell slightly between 2015 and 2016, by 0.2%, achieving Euro2.1Bn. This fall was actually only because of currency fluctuations. “Currencies created a headwind for us last year,” said Altendorf. Working from the value of sales in local currencies, sales in total actually increased by 2.1%. Whilst the Group is family owned, their annual report is published and audited to the standards expected of any other international business.

CEO Matthias Altendorf emphasised that “When compared to overall industry growth, we held our own”. E+H performed well in Europe, but sales in America declined. Africa and the Middle East experienced solid growth, but in the Asia-Pacific region business stagnated.

Within Europe, the best performances for E+H came from Ireland, Italy and Finland. The best performing sectors in all countries were food & beverage, life sciences, and water & waste water. Overall business declined in oil & gas, chemicals and primary industries like metals. The power and energy industry sectors showed good performance outside Germany, where E+H also felt the effect of weak German exports and some internal restructuring. The oil & gas decline badly affected sales in USA, UK and Norway, although the UK sales centre gave a good performance by aligning efforts with other active market sectors.

Investment continues.

Production

E+H plans for investment and growth continue for the current year. Earlier in the week a new factory extension was opened in Reinach, where flow products are manufactured. (see Read-out Signpost – “Flowmeter output growth requires new facilities” – 5 May 2017).  The journalists were given a tour of the manufacturing facility in Maulberg (D), where a new extension to the production area is in operation, and a new NMi level measurement system calibration facility for radar based systems has just been completed. This is certified suitable for calibration of the Micropilot NMR81 radar system, working at 80GHz, which achieves a +/-0.5mm accuracy over a 30m range, for use in oil storage tanks and oil terminals. There are plans now to extend this calibration facility to allow such calibration out to 40metres, as well as to extend the factory yet further: 1912 people work at E+H Maulburg, and 5200 people in the Basel region, out of the total E+H staff of 13,000.

Analytical measurements
The biggest growth area in E+H is actually in the analytical instruments that use Raman spectroscopy to analyse liquid and gas streams on-line. The major industries now applying this technique are within the life sciences sector, where immediate analysis of input and both gaseous and liquid effluent streams enables much closer control of biochemical and fermentation processes. Indeed the 2017 issue of the E+H corporate magazine “Changes” features a major focus on new applications in the Life Sciences industries.

Other new analytical techniques are developed for monitoring water treatment processing, for example in the new Swiss plants which by law have to have a fourth stage of purification, to remove hormones, phosphorus and other drug residues. The strength of E+H here derives from their strategic decision a few years ago to invest in the process analytical area, particularly in the field of spectroscopy, acquiring Kaiser Optical, Analytik Jena and SpectraSensors. “Our analytics strategy has been validated by the market,” said Matthias Altendorf.

Bundling IIoT activities

Digitization

The acquisition of German SensAction AG in early 2017 also ties in with Strategy 2020+ which was rolled out last year. The company, headquartered in Coburg (D), manufactures innovative systems for measuring concentrations in liquids. Endress+Hauser is tackling the challenges of digitalization by bundling a number of activities. A new subsidiary in Freiburg in Breisgau,(D), is working exclusively on products, solutions and services related to the Industrial Internet of Things (IIoT).

The significance of digitalization can also be seen in the growing number of patent registrations. There were 273 first filings in 2016. The intellectual property rights portfolio thus boasts more than 7,000 active patents. R&D spending rose to 7.8 percent of sales. Endress+Hauser introduced 64 new products to the market. “We are investing in innovation for our customers,” underlined the CEO.

Trends in automation.
The focus for E+H sales and their customer base is broadly on automation engineers, so it was interesting to hear Matthias Altendorf comment that the statistics for industrial output show that the Britain has now dropped out of the top 10 countries in terms of automation business activity, whereas they had held a prominent position there some years ago.

The other aspect of interest was that there are distinct differences between countries, in terms of the sex of the engineers involved in the major projects served by E+H. In Germany they are mostly male, whereas the majority of engineers in Turkey are female. In South Korea and India there are high percentages of female engineers (and engineering journalists). Also, by industry, it is noticeable that in the biochemical and life science sectors the engineers are predominantly female.

 @Endress_Hauser #PAuto #IoT

Innovative biosensors incite use in non-traditional applications.

07/08/2015

Besides healthcare and food, biosensor devices are penetrating the mobile, security and automotive segments, notes Frost & Sullivan

Click image  for complimentary access to more information on this research.

Click image  for complimentary access to more information on this research.

The biosensors market is proving highly attractive as it exhibits continuous growth in applications, penetration into newer sectors, and development of devices resulting in higher revenue year after year. The global biosensors space has seen the entry of multiple participants each year with none having exited the market so far.

Recent analysis from Frost & Sullivan, Analysis of the Global Biosensors Market, finds that the market generated revenues of $11.53 (€10.54) billion in 2014 which is estimated to more than double to $28.78 (€26.31) billion in 2021. Though innovation has facilitated biosensor penetration into a number of diverse markets, healthcare and food pathogen detection are currently the largest application segments.

“With health and wellness becoming a priority for all concerned in the value chain – individuals, governments, healthcare institutions, diagnostic device developers, system integrators, the medical fraternity and insurance companies – biosensors are acquiring more importance,” said Frost & Sullivan Measurement & Instrumentation Industry Principal Dr. Rajender Thusu. “For instance, strict food safety regulations enacted by federal governments to improve the health of consumers, require the use of biosensors for compliance monitoring.”

Under these regulations, meats, milk and milk products must be tested for the absence of a number of pathogens before being processed and supplied for consumption. Along with the rising trend of testing fresh vegetables and processed food for the presence of different pathogens, these norms are fuelling the adoption of testing kits.

Significantly, the use of biosensors is expanding to diverse end-user markets. While security agencies are using biosensors to detect drugs, banned substances and explosives, biosensors are also a valuable tool for monitoring health of soldiers.

Realizing the benefits, biosensor manufacturers have started to move to mobile platforms which will enable users to monitor key health parameters in real-time. Biosensor relevance in automotive applications will grow with the use of cognitive biosensors to boost driver alertness and enable safety.

Manufacturers must strive harder to meet the stringent and specific requirements of a number of industries such as wearable medical devices, food processing, environmental, bio-defense, and automotive.

Biosensor manufacturers must also look into other issues such as the long detection times associated with existing test methods in some applications. As samples need to be enriched in some cases before one can test for the presence of pathogens.

“Several companies are investing in R&D to innovate and improve biosensor technology, make it highly sensitive, and develop technology platforms to reduce detection time appreciably,” noted Dr. Thusu. “Since the long development cycle of biosensor devices is another challenge, manufacturers are trying to address this by deploying both optical and non-optical technologies.Rapid detection biosensor devices are the need of the hour for a number of applications.”

Further, manufacturers are developing nano-biosensors, with features to detect pathogens at a concentration as low as one cell per five milliliters of water. Advanced-stage research is also being conducted to create unique biosensors that can detect cell-to-cell interactions in therapeutic monitoring.