The ‘ins and outs’ of air quality monitoring!

20/02/2017
The British National Institute for Health and Care Excellence (NICE) recently issued draft guidance on ‘Air pollution – outdoor air quality and health.’ 

Here, Jim Mills, Managing Director of Air Monitors Ltd, explains why there will need to be more funding for monitoring if the mitigation measures mentioned in the guidance are to be implemented effectively. Jim also highlights the close relationship between outdoor air quality and the (often ignored) problems with indoor air quality.

The NICE guidelines are being developed for Local Authority staff working in: transport, planning, air quality management and public health. The guidance is also relevant for staff in healthcare, employers, education professionals and the general public.

Covering road-traffic-related air pollution and its links to ill health, the guidelines aim to improve air quality and so prevent a range of health conditions and deaths. Unfortunately, on the day that the draft guideline was published, most of the national media focused on one relatively minor recommendation relating to speed bumps. ‘Where physical measures are needed to reduce speed, such as humps and bumps, ensure they are designed to minimise sharp decelerations and consequent accelerations.’ Measures to encourage ‘smooth driving’ are outlined; however, the guidelines also address a wide range of other issues, which, in combination, would help tackle urban air pollution.

Public sector transport services should implement measures to reduce emissions, but this is an area that could involve the greatest financial cost.

Many local authorities would doubtless comment that they are already implementing many of the guideline recommendations, but refer to budgetary constraints on issues that involve upfront costs. This issue was raised on BBC Radio 4 when the issue was discussed on 1st December.

AQMesh Pod

AQMesh Pod

The NICE guidelines recommend the inclusion of air quality issues in new developments to ensure that facilities such as schools, nurseries and retirement homes are located in areas where pollution levels will be low. LAs are also urged to consider ways to mitigate road-traffic-related air pollution and consider using the Community Infrastructure Levy for air quality monitoring. There are also calls for information on air quality to be made more readily available.

LAs are also being urged to consider introducing clean air zones including progressive targets to reduce pollutant levels below the EU limits, and where traffic congestion contributes to poor air quality, consideration should be given to a congestion charging zone. The guidelines also highlight the importance of monitoring to measure the effects of these initiatives.

As part of the consultation process, NICE is looking for evidence of successful measures and specifically rules out “studies which rely exclusively on modelling.”

In summary, all of the initiatives referred to in the NICE report necessitate monitoring in order to be able to measure their effectiveness. However, most LAs do not currently possess the monitoring capability to do so. This is because localised monitoring would be necessary before and after the implementation of any initiative. Such monitoring would need to be continuous, accurate and web-enabled so that air pollution can be monitored in real-time. AQMesh is therefore the ideal solution; small, lightweight, quick and easy to install, these air quality monitors are able to monitor all the main pollutants, including particulates, simultaneously, delivering accurate data wirelessly via the internet.

Whilst AQMesh ‘pods’ are very significantly lower in cost both to buy and to run than traditional reference stations, they still represent a ‘new’ cost. However any additional costs are trivial in comparison with the costs associated with the adverse health effects caused by poor air quality, as evidenced in the recent report from the Royal College of Physicians.

Inside Out or Outside In?

Fidas® Frog

Fidas® Frog

The effects of air pollution are finally becoming better known, but almost all of the publicity focuses on outdoor air pollution. In contrast, indoor air quality is rarely in the media, except following occasional cases of Carbon Monoxide poisoning or when ‘worker lethargy’ or ‘sick building syndrome’ are addressed. However, it is important to understand the relationship between outdoor air quality and indoor air quality. Air Monitors is currently involved in a number of projects in which air quality monitoring is being undertaken both outside and inside large buildings, and the results have been extremely interesting.

Poorly ventilated offices tend to suffer from increased Carbon Dioxide as the working day progresses, leading to worker lethargy. In many cases HVAC systems bring in ‘fresh’ air to address this issue, but if that fresh air is in a town or city, it is likely to be polluted – possibly from particulates if it is not sufficiently filtered and most likely from Nitrogen Dioxide. Ventilating with outdoor air from street level is most likely to bring air pollution into the office, so many inlets are located at roof level. However, data from recent studies indicate that the height of the best air quality can vary according to the weather conditions, so it is necessary to utilise a ‘smart’ system that monitors air quality at different levels outside the building, whilst also monitoring at a variety of locations inside the building. Real-time data from a smart monitoring network then informs the HVAC control system, which should have the ability to draw air from different inlets if available and to decide on ventilation rates depending on the prevailing air quality at the inlets. This allows the optimisation of the internal CO2, temperature and humidity whilst minimising the amount of external pollutants brought into the indoor space. In circumstances where the outside air may be too polluted to be used to ventilate, it can be pre-cleaned by scrubbing the pollutant gases in the air handling system before being introduced inside the building.

Fidas200The implementation of smart monitoring and control systems for buildings is now possible thanks to advances in communications and monitoring technology. AQMesh pods can be quickly and easily installed at various heights outside buildings and further units can be deployed internally; all feeding near-live data to a central control system.

Another example of indoor air quality monitoring instrumentation developing from outdoor technology is the ‘Fidas Frog,’ a new fine dust aerosol spectrometer developed by the German company Palas. The Frog is an indoor, wireless, battery-powered version of the hugely popular, TÜV and MCERTS certified Fidas 200. Both instruments provide simultaneous determination of PM fractions, particle number and particle size distribution, including the particle size ranges PM1, PM2.5, PM4, PM10 and TSP.

Evidence of outdoor air pollution contaminating indoor air can be obtained with the latest Black Carbon monitors that can distinguish between the different optical signatures of combustion sources such as diesel, biomass, and tobacco. The new microAeth® MA200 for example, is a compact, real-time, wearable (400g) Black Carbon monitor with built-in pump, flow control, data storage, and battery with onboard GPS and satellite time synchronisation. Samples are collected on an internal filter tape and wireless communications are provided for network or smartphone app integration and connection to other wireless sensors. The MA200 is able to monitor continuously for 2-3 weeks. Alternatively, with a greater battery capacity, the MA300 is able to provide 3-12 months of continuous measurements.

In summary, a complete picture of indoor air quality can be delivered by a combination of AQMesh for gases, the Palas Frog for particulates and the microAeth instruments for Black Carbon. All of these instruments are compact, battery-powered, and operate wirelessly, but most importantly, they provide both air quality data AND information on the likely source of any contamination, so that the indoor effects of outdoor pollution can be attributed correctly.

@airmonitors #Environment #PAuto @_Enviro_News


Particulate monitors selling like hot cakes.

03/12/2016

Palas, the German manufacturer of particulate monitoring instruments, is expanding production to cope with demand for its fine particulate monitor, the Fidas® 200. In the following article Jim Mills explains why Air Monitors, the British distributor, is being kept busy by the demand for this exciting new technology.

fidas_200PM monitoring – the ultimate goal
We monitor PM because of its acute health effects. It irritates our eyes and lungs, and some of the finer particles were more recently shown to be able to move directly from the nasal cavity to the brain. Monitoring is therefore essential, but there are almost as many monitoring methods as there are types of PM, so it is vitally important to monitor what matters. If you are measuring dust from a construction site, the PM is relatively large in diameter and heavy, but if you are monitoring PM from diesel emissions in a city, the smallest particles with much less mass but high particle numbers, are of greater interest. Monitoring a single size fraction provides an incomplete picture of particulate contamination and risks ignoring the PM of most interest, particularly if the ignored fractions are the finer particles that travel deepest into the lungs. The ideal PM monitor would therefore reliably and accurately monitor all important PM fractions, with high data capture rates and low service requirements… hence the heavy demand for the Fidas 200.

Fidas® 200
The Fidas 200 is a fine dust ambient air quality monitoring device, developed specifically for regulatory purposes; providing continuous and simultaneous measurement of PM1, PM2.5, PM4, PM10, TSP (PMtot), as well as particle number concentration and particle size distribution between 180nm and 18µm (further non-certified size ranges are also available on request).

Employing a well-established measurement technology – optical light scattering of single particles – the Fidas 200 is equipped with a high intensity LED light source, which is extremely stable, delivering a long lifetime, with minimal service requirements. An optical aerosol spectrometer determines the particle size using Lorenz‐Mie scattered light analysis of single particles. These particles move through an optical measurement volume that is homogeneously illuminated with white light, and each particle generates a scattered light impulse that is detected at an angle of 85° to 95° degrees. The particle number measurement is based on the number of scattered light impulses, and the level of the scattered light impulse is a measure of the particle diameter.

The Fidas 200 operates with a volume flow of approx. 0.3m3/h and is equipped with a Sigma‐2 sampling head, which enables representative measurements even under strong wind conditions. The sampling system includes a drying system that prevents measurement inaccuracies caused by condensation from high humidity, which means that it will continue to function correctly in misty or foggy conditions but without the loss of semi-volatile fractions of the PM. It is also equipped with a filter holder for the insertion of a plane filter (47 or 50 mm in diameter) which enables subsequent chemical analysis of the aerosol.

Different versions of the Fidas 200 allow for stand-alone outdoors installation or for installation inside a measurement cabinet or air quality monitoring station.

Performance
The Fidas 200 is the only ambient continuous PM monitor in the UK to have passed TÜV and MCERTS. The MCERTS certificate (Sira MC16290/01) confirms that the Fidas 200 complies with the MCERTS Performance Standards for Continuous Ambient Air Quality Monitoring Systems, and with MCERTS for UK Particulate Matter. The instrument has type-approval to the Standards EN 12341 (PM10), EN 14907 (PM2.5) and is certified to the Standards EN 15267-1 and -2.

Importantly, the FIDAS 200 has half the uncertainty of many of its rivals and one third of the required uncertainty (25%).

Typical data capture rates exceed 99%. This has been achieved by a design approach that is focused on reliability. For example, two pumps operate in parallel, providing redundancy protection, and the instrument continuously monitors status and calibration.

Monitoring frequency has an adjustable time resolution ranging from 1 second up to 24 hours. However, high frequency data provides almost real-time access to readings when deployed with a remote web-enabled Envirologger. This enables the detection of short-term spikes, providing much greater insight into the causes of PM pollution.

The Fidas instruments have been proven in many countries as well as Britain; Air Monitors has been supplying Fidas PM monitors for around three years and there are now over 30 monitors in operation Britain alone.

Costs
One of the major financial considerations for Fidas 200 is its extremely low operating cost; the requirement for consumables is almost nil (no filter required) and its power consumption is around one fifth of its nearest rival. Calibration can be checked and adjusted, if necessary, quickly and easily in the field with a simple monodisperse powder test.

The purchase cost of a single Fidas 200 is a little more than some ambient PM monitors, but it is less expensive than others. However, for most instruments, a requirement to monitor two fractions, say PM2.5 and PM10, would necessitate two instruments and therefore double the cost. With budgets under pressure, Fidas therefore provides an opportunity to obtain better data for less cost.

In summary, the Fidas 200 offers better performance than all of its rivals; usually at significantly lower capital cost and always with dramatically lower operational costs. Consequently, it is no surprise that these instruments are selling like hot cakes.

@airmonitors #PAuto @_Enviro_News


Innovation drives flue gas treatment.

08/11/2016
Working closely with Gasmet’s Belgian Distributor, Kelma NV, Lhoist has developed laboratory, pilot scale and mobile process monitoring capabilities to evaluate FGT products that are still in the development phase or to demonstrate the effectiveness of existing FGT products at customers’ sites.
lhoistpilotA business strategy with a heavy focus on innovation has enabled Lhoist, a family owned Belgian company, to become one of the world’s leading providers of Flue Gas Treatment (FGT) products and solutions. In this following article, Johan Heiszwolf, Lhoist’s R & D Director for environmental applications and Antti Heikkilä from gas analyser manufacturer Gasmet Technologies explain how Lhoist’s continual investment in innovation has led to impressive growth in a variety of market sectors, including FGT.

Sharing a common goal, experts in emissions monitoring and emissions abatement have formed a working partnership to develop innovative new materials for treating pollutants in flue gas emissions.

Lhoist history
Lhoist’s roots go back to 1889 when Hippolyte Dumont opened a factory in Belgium. Since that time, the firm has spread internationally: first to France in 1926 on the impetus of the founder’s son-in-law, Léon Lhoist, who further developed the company by acquiring lime, limestone and dolomite plants in Belgium and France. Today, Lhoist is a world leading producer of lime, dolime and minerals, with facilities across Europe, the Americas and Asia.

Over the past 35 years, Lhoist’s production has grown significantly and Lhoist now operates more than 100 facilities in 25 countries, with around 6,000 employees of around 40 nationalities.

Lime, clay and the derivatives of these materials are used in an extremely broad spectrum of industries including agriculture, construction, oil and gas, chemicals, glass, metals and environmental protection including water, wastewater and FGT.

The FGT market has grown considerably in recent decades as a result of higher environmental standards and the development of regulations that imposed emissions limits on industrial processes. These regulations have also driven growth in Gasmet’s business as process operators around the world have sought to monitor multiple gases simultaneously with FTIR analysers in order to demonstrate compliance with emission limits.

One of the reasons for the diversity of Lhoist’s markets is the company’s focus on innovation. Just outside Brussels, the company has established a ‘Business Innovation Centre’ (BIC) which is known as a ‘360 degree talent incubator’ because many of the group’s new recruits spend time at the BIC in order to learn about the group’s culture and its core competencies. Focusing on Research & Development, Intellectual Property, and Strategic Marketing, the BIC staff come from 15 different nations and are given time to spend ‘scouting’ for new scientific solutions to commercial challenges. This strong focus on inorganic and application research is one of the ways in which Lhoist retains its position as a leader in key markets and ensures that innovation continues to drive the growth of the company.

FGT Research
One of the first product groups to be developed by the Lhoist BIC was Sorbacal® which is employed for the removal of major acid pollutants (SOx, HCl and HF) in gaseous emissions from combustion plants such as power stations and incinerators. A number of different products within the Sorbacal® range were developed to meet the needs of different processes. For example, particles of Sorbacal® SP/SPS have a much larger surface area and pore volume in comparison with standard hydrated lime, so this product is employed in applications that require enhanced performance.

An enormous number of tests have to be undertaken to evaluate potential new products and in the case of FGT, the effectiveness of candidate products to remove pollutant gases is key. The BIC laboratory therefore developed a capability to generate artificial flue gas mixtures containing acid gases (SO2 and HCl) in a mixture of N2, O2, CO2, H2O and NOx. The gas composition of this artificial flue gas was tightly managed with mass flow controllers in order to ensure an accurate comparison of pre- and post-treated gas for each product under evaluation.

Different gas analysers were initially used to measure different gases. For example, an InfraRed analyser was used to measure SO2, but for this instrument it was necessary to remove moisture from the sample gas before analysis and some SO2 was lost from the sample as a result. “This complicated the work and incurred delays,” comments Alain Brasseur, Lhoist FGT Senior Research Engineer. “It was also necessary to operate a separate bench for HCl, which further extended the time taken for the tests and introduced a higher possibility of experimental error. A key advantage of FTIR is that it measures both SO2 and HCl, and does so without removing water from the sample.”

Bart De Backer from Gasmet’s local distributor Kelma was therefore contacted and asked to provide information on multigas monitoring with FTIR, which led to the utilisation of a Gasmet DX4000 analyser within the BIC laboratory. At the same time, the staff developed an automated system for running the test unattended, and as a result of the FTIR’s ability to monitor multiple gases in almost real-time in conjunction with test automation, the throughput of the laboratory was increased 10-fold. “The use of Gasmet FTIR gave us a greater insight into the characteristics of the sorbent and facilitated a major step forward in our development programme,” comments Alain Brasseur. “By dramatically increasing the throughput we were able to evaluate a larger number of samples in a shorter period of time, which enabled us to discount those products that failed to meet the required levels of performance at an early stage.”

The laboratory trials effectively assess the intrinsic capacity of the sorbents and if they perform well, the assessment process is continued in a pilot plant to evaluate performance under simulated operating conditions. The pilot plant was also developed by the Lhoist BIC, and is capable of generating a mixture of gases and steam at 180 Deg C to mimic aggressive emissions. The pilot plant is also able to measure sorbent performance under dynamic conditions with varying gas concentrations and temperature.

The pilot plant consists of two separate units – each capable of generating dynamic emissions across a broad range of conditions. The emissions from the older of the two units are monitored with a Gasmet DX4000 heated multigas FTIR analyser. A new pilot unit is monitored by Gasmet’s fixed Continuous Emissions Monitoring System (CEMS) which analyzes gas both before and after treatment using a heated switch-over system.

In addition to the chemical characteristics of the sorbent, Lhoist also places a heavy emphasis on its physical characteristics. For example, the grains of a dry powder product have to be fine enough to be reactive, but not too small to negatively impact the flow behavior of the powder.

In addition to the laboratory and pilot plant facilities, Lhoist has also developed a mobile system that is able to operate at customer sites. Historically, this necessitated the deployment of a large truck, but thanks to the compact nature of the portable FTIR analysers, this is no longer necessary; KELMA has supplied two Gasmet DX4000 portable FTIR analysers in customised rugged transport cases so that the monitoring equipment can be quickly and simply shipped around the world to customer sites. The FTIR analysers can even be operated completely remotely at a customer site. For example in a recent trial two FTIR analyzers, measuring inlet and outlet gas composition, were installed in a plant in the USA while they were monitored remotely from Belgium. The experts from KELMA could log-in to the FTIR analyzers and could perform a software update and calibration.

Onsite monitoring is conducted by Lhoist technical support teams to:

  • demonstrate the enhanced performance of the Sorbacal® products
  • show customers how to maximise treatment efficiency
  • help customers troubleshoot abatement issues

The benefits of onsite demonstrations are considerably advanced by the capabilities of FTIR gas analysis.

Advantages of FTIR gas analysis
FTIR (Fourier Transform InfraRed) is a sophisticated technology for analysing sample gases both qualitatively and quantitatively. The key feature of these instruments is their ability to monitor multiple compounds simultaneously. The Gasmet FTIR analysers are capable of measuring almost any gas and have been developed over many years specifically for the emissions monitoring market. This means that they are extremely rugged and work reliably in both fixed and portable versions. However, a key benefit for environmental applications is their ability to analyse hot, wet, aggressive gas mixtures.

All of the company’s FTIR instruments, fixed and portable, contain exactly the same core analyser which means that they can be operated with the same software, no extra training is necessary and results are directly comparable.

Using Calcmet™ software users of Gasmet analysers are able to analyse sample spectra, producing almost real-time data for pre-selected compounds. However, the retention of recorded spectra offers an opportunity to identify ‘unknowns’ by comparison with reference spectra, and to analyse recorded spectra retrospectively for compounds that were not necessarily of interest at the time of the measurement. For example, Lhoist now includes SO3 in many of its measurements and now has the ability to study measurements for this compound from readings that were taken in the past. This highlights an important advantage of FTIR – when it becomes necessary to measure new compounds, because of new legislation for example, no extra hardware is necessary, so the additional costs are negligible.

In contrast with many traditional gas analysers, the Gasmet FTIR instruments do not require periodic recalibration. A daily background spectrum measurement with zero gas (nitrogen) is enough to preserve measurement accuracy. Instead of periodic span calibrations, reference spectra for analysed gases are measured at the factory when the instrument is made and these do not drift.

From Lhoist’s perspective, Alain Brasseur says: “The ability to work with wet, corrosive gases is obviously a major advantage, and since we routinely analyse over 10 gases, monitoring is much less complicated now that we can do so with just one analyser.

“The size of the Gasmet analysers is also a major advantage for us – they fit neatly into the automated testing system which is installed in a normal lab fume cupboard, and the portable equipment is easy to transport to remote customer sites.

“We have found the instruments to be extremely reliable, requiring minimal maintenance. Also, the support from Gasmet and Kelma has been extremely good and the facility to connect to overseas instruments from Brussels via the internet has been a significant benefit.”

In summary, the evolution of Lhoist’s FGT products has been made possible by giving a talented pool of international experts the freedom to innovate and by working in partnership with like-minded technology leaders such as Gasmet.

@Gasmet_Tech #PAuto #Sorbacal #Lhoist

Treating wastewater as a resource.

27/09/2016
A number of British landfill operators are turning wastewater into a resource by utilising OTT monitoring and control systems to manage the irrigation of Willow crops (for renewable energy generation) with pre-treated effluent.

Background
Leachate from landfill sites represents a significant potential environmental liability, extending long into the future after a landfill site has closed. Conventional treatment and disposal options involve biological treatment and consented discharge to either the wastewater treatment network or to the environment. Alternatively, effluent may be collected by tanker for treatment and disposal off-site. However, to improve sustainability and broaden the treatment options, work initiated in the 1990s developed an approach that sought to use effluent as a source of nutrients and water for a Short Rotation Coppice (SRC) crop planted upon the restored landfill.

Willows fed on wastewater!

Willows fed on wastewater!

Following the success of early trials, the Environment Agency published a Regulatory Position Statement in 2008, which said: ‘SRC as part of a landfill leachate treatment process… is a technique (that) can be an environmentally acceptable option if managed appropriately.’

Early systems were operated and managed manually but with the addition of OTT sensors, telemetry and control systems, the process was automated to optimise irrigation and maximise both the disposal of effluent and biomass yield.

Willow SRC has become increasingly popular in environmental restoration work, providing a cost-effective material for stabilisation and reclamation of disturbed landscapes, bioremediation and biomass production.

SRC involves the planting of high yielding varieties of willow at a high density, typically 15,000 plants per hectare. The crop can be expected to last for around 30 years, with harvesting taking place every 3-5 years, and yields varying from 8 to 18 tonnes of dry woodchip per hectare per year. Willow grows quickly and has a particularly high demand for water, so it is ideal for the disposal of large volumes of treated effluent. In addition, the high planting density results in the development of a dense root hair system; effectively creating a biological filter for the treatment of organic compounds and the absorption of nutrients and some heavy metals. Soil fauna help to break down the effluents applied to the crop and soil particles control the availability of nutrients to the willow.

Monitoring and control
In early schemes, irrigation was managed manually on a timed basis with irrigation quantities based on external estimates of evapotranspiration. However, increased levels of monitoring and control are now possible. OTT’s Matthew Ellison explains: “The key objective is to supply the crop with an optimised amount of water, whilst minimising the requirement for staff on site. Too much irrigation would cause run-off and too little would under-utilise the treated effluent and result in poor growth conditions which would affect yield and potentially threaten the crop.

Soil moisture sensors

Soil moisture sensors

“An on-site weather station feeds local weather data to the system which uses crop data to predict evapotranspiration that is used to determine irrigation rates. Soil moisture sensors then check that soil moisture status is correct. Other sensors monitor the performance of the system; checking irrigation feed reservoir level, in-pipe pressure and there are sensors to check flow rates from the drip-feed irrigation. This communication capability is made possible with OTT’s Adcon Telemetry radio network.

“Our latest monitoring and control equipment automates the management of the system for unattended operation and staff are only required by exception. This means that the system is able to operate autonomously, delivering regular data reports, and staff are notified by email or text if alarm conditions occur.”

Emphasising the advantages of controlling the entire network, Matthew adds: “This system facilitates the ability to control and synchronise the main pump, and to open and close the valves at each irrigation zone.”

The latest OTT monitoring and control systems include:

  1. Soil moisture sensors
  2. Irrigation tank level sensors
  3. Irrigation function check sensors
  4. Pipe valves and pressure sensors
  5. Automatic weather station (to calculate local evapotranspiration)
  6. Radio telemetry
  7. ADCON Gateway and PC running addVANTAGE software
  8. Internet connectivity for remote log in

Summary
Looking back over a number of SRC projects, Stephen Farrow one of the instigators of this approach in the UK, and now an Independent Consultant says: “When viewed practically, environmentally and commercially, experience has demonstrated the viability of the overall approach.

“It is also clear that process optimisation with relatively low cost investment in OTT’s monitoring and control equipment has significantly added to the support functionality in terms of both operation and regulatory management.’’

OTT’s Matthew Ellison agrees, adding: “SRC clearly offers a sustainable option for effluent treatment, with highly positive effects on carbon footprint and biodiversity.

“In addition to the environmental benefits, process automation has significantly reduced labour requirements and helped to demonstrate compliance with the site-specific requirements of the Environment Agency.”


Creating 1000 times more power with submersible load measuring pins.

22/07/2016
“Our DBEP load measuring pins and DSCC pancake load cells were ideal to use in this marine application, as both can be readily customised, including dimensions and IP ratings, to make them fully submersible” says Ollie Morcom, Sales Director of Applied Measurements Ltd.

Ocean and tidal currents are a sustainable and reliable energy system. Minesto’s award winning product Deep Green converts tidal and ocean currents into electricity with minimal visual and environmental impact. Minesto’s Deep Green power plant is the only marine power plant that operates cost efficiently in areas with low velocity currents.

DBEP

Pre-assembly of DBEP pin on Deep Green

DBEP Load Pin
• Fully Customisable
• IP68 to Depths of 6500 Metres Available!
• Stainless Steel – Ideal for Marine Applications
Minesto needed to measure the strut force in Deep Green’s kite assembly. The measuring device needed to withstand permanent underwater submersion. “Our load measuring pin’s stainless steel construction and ability to be customised to IP68 submersion rating made this the ideal choice for use in Deep Green’s control system”, explains Ollie Morcom, Applied Measurements’ Sales Director. Their 17-4 PH stainless steel construction makes them perfect for marine and seawater applications. The DBEP load measuring pin was modified to have an IP68 protection rating to a depth of 30 metres and was fitted with a polyurethane (PUR) submersible cable and cable gland, ensuring the entire measuring system was suitable for this underwater marine application.

Deep-Green-cu-219x300The load measuring pin needed to fit within Deep Green’s control measuring system. The load measuring pin’s dimensions can be customised to suit a specific design. As Deep Green needed to retain its small and lightweight construction, the DBEP load measuring pin was manufactured to their exact dimensions, ensuring that it fitted within the control assembly without adding unnecessary additional weight to the structure, thus maintaining the efficiency of the Deep Green kite.

What is Deep Green?
Deep Green is an underwater kite assembly with a wing and a turbine, attached by a tether to a fixed point on the ocean bed. As the water flows over the kite’s wing, the lift force from the water current pushes the kite forward. The rudder steers the kite in a figure of 8 trajectory enabling Deep Green to reach a velocity 10 times faster than the water current, generating 1000 times more power. As the water flows through the turbine, electricity is produced in the gearless generator. The electricity is transmitted through the cable in the tether and along subsea cables on the seabed to the shore. Customised versions of our DBEP load measuring pins and DSCC pancake load cells are used within the control system of the kite.

DSCC_Pancake_Cell

DSCC Pancake Cell

DSCC Pancake Load Cell
• Fully Customisable
• Low Physical Height
•Optional: IP67, IP68 and Fatigue Rated Versions Available
• High Accuracy: <±0.05%/RC
Minesto also needed to monitor the varying tension load of the tether created by the wing. Using our high accuracy DSCC pancake load cells we were again able to make a custom design to fit into their existing assembly. Our pancake load cells are also manufactured from stainless steel and can be modified with alternative threads, custom dimensions, mounting holes, higher capacities and higher protection ratings. The DSCC pancake load cell used in Minesto’s marine power plant was IP68 rated for permanent submersion in seawater to 50 metres depth. The pancake load cells design delivers excellent resistance to bending, side and torsional forces and its low profile makes it ideal where a low physical height is required.

ICA2H Miniature Load Cell Amplifier
Within the pancake load cell we fitted a high performance ICA2H miniature load cell amplifier. The ICA2H miniature amplifier is only Ø19.5mm and 7.6mm high and is designed to fit inside a broad range of strain gauge load cells where a larger amplifier cannot. It has a low current consumption and delivers a 0.1 to 5Vdc high stability output. Using an integrated miniature amplifier kept Deep Green’s control assembly small and lightweight. The ICA2H miniature amplifier was chosen because of its high stability and fast response which is essential for the safe and efficient operation of Deep Green.

“We really enjoyed working with Minesto on this fantastic marine project.”

@AppMeas #PAuto #Power

It’s the little things that trip you up!

22/01/2016
By Brian Booth, VP of the Water Treatment Innovation Platform, NCH Europe

There’s a lot of chemistry, physics and maths involved in perfecting your water treatment solution. To make sure you successfully treat and protect your system you need to get the equilibrium right, and this relies on balancing all the appropriate equations – even the little things you may not give much thought to. Missing something like half life out of your planning can have serious negative implications for your water treatment, especially when it comes to complying with regulations such as those for Legionella control.

When dosing your water cooling system with biocides it’s imperative that the concentration is correct and that it remains at a continuous concentration for a suitable period of time. While this sounds simple, it’s easy to forget that any bleed water required to compensate for water that may evaporate out of a system, will take a portion of your biocide with it.

Say you put 10 tonnes of make-up water into your system, and every hour 1 tonne runs off as bleed water, this will determine the half life for your system. So for example, let’s imagine the chemical you are using to meet the Government’s Health and Safety Executive (HSE) Legionella control L8 Code of Practice needs to remain at a concentration of 100 parts per million (ppm) for three hours to be successful.

If you just dose 100ppm and walk away, the concentration will gradually fall from the time of dosing and will not remain high enough for long enough as the bleed water will take a portion away with it. This will result in a failure to meet the regulation, making you negligent and leaving you liable.

This is why it’s vital to be aware of half life so that you can increase the dose of your biocide accordingly. Do you know how many hours it would take to reduce a 100ppm dose to 50ppm in your water cooling system?

Although it’s hard to be 100 per cent accurate, you can work out your half life with this simple equation:

 

Half_Life_hours.jpg

If you know your biocide is going to take three hours to be effective, but the half life of your system is one hour you’re going to have to make some adjustments to maintain appropriate concentration. For instance, using our above example of legionella control biocide, to stay at a minimum of 100ppm for long enough you’ll need to dose to 800ppm.

A bit of predictive mathematics goes a long way towards protecting your water system and keeping you compliant. Don’t let a little thing like half life leave you vulnerable to negligence claims – do the maths first!

Half_life_in_water_treatment


Air pollution – the invisible roadside killer.

14/12/2015

The VW emissions scandal has helped to raise awareness of the deadly threat posed by air pollution in many of our towns and cities. In the following article, Jim Mills, Managing Director of Air Monitors, an instrumentation company, explains why diesel emissions will have to be lowered and how the latest monitoring technology will be an essential part of the solution.

Background
The World Health Organisation has estimated that over 500,000 Europeans die prematurely every year as a result of air pollution – especially fine particulates from combustion processes and vehicles. Of these, around 30,000 are in Britain; however, experts believe that the figures could be substantially higher if the effects of Nitrogen Dioxide (NO2) are also taken into consideration.

London Smog - now less visible!

London Smog – now less visible!

Historically, air pollution was highly visible, resulting in air pollution episodes such as the Great London Smog in 1952. However, today’s air pollution is largely invisible (fine particulates and NO2 for example), so networks of sophisticated monitors are necessary.

The greatest cause for alarm is the air quality in our major towns and cities where vehicles (main diesels) emit high levels of NO2 and particulates in ‘corridors’ that do not allow rapid dispersion and dilution of the pollutants. Urban vehicles also emit more pollution than free-flowing traffic because of the continual stopping and starting that is necessary.

As a result of its failure to meet European air quality limits, the Government was taken to the UK Supreme Court in April 2015 by ClientEarth, an organisation of environmental lawyers. In a unanimous judgement against Defra (English Department for Environment, Food and Rural Affairs), the Court required the urgent development of new air quality plans. In September 2015 Defra published its Draft Air Quality Plans, but they have not been well received; respondents have described them as disappointing and unambitious. CIWEM (The Chartered Institution of Water and Environmental Management) , an organisation representing environmental management professionals, for example, said: (the plans) “rely on unfunded clean air zones and unproven vehicle emission standards.”

Some commentators believe that Defra should follow Scotland’s lead, following the publication, in November 2015, of ‘Cleaner Air for Scotland – The Road to a Healthier Future’ (CAFS). Key to this strategy is its partnership approach, which engages all stakeholders. Under CAFS, the Scottish Government will work closely with its agencies, regional transport partnerships, local authorities (transport, urban and land-use planners and environmental health), developers, employers, businesses and citizens. CAFS specifies a number of key performance indicators and places a heavy emphasis on monitoring. A National Low Emission Framework (NLEF) has been designed to enable local authorities to appraise, justify the business case for, and implement a range of, air quality improvement options related to transport (and associated land use).

Traffic-related air pollution
In addition to the fine particulates that are produced by vehicles, around 80% of NOx emissions in areas where Britain is exceeding NO2 limits are due to transport. The largest source is emissions from diesel light duty vehicles (cars and vans). Clearly, there is now enormous pressure on vehicle manufacturers to improve the quality of emissions, but urgent political initiatives are necessary to address the public health crisis caused by air pollution.

A move to electric and hybrid vehicles is already underway and developments in battery technology will help improve the range and performance of these vehicles, and as they become more popular, their cost is likely to lower. The prospect of driverless vehicles also offers hope for the future; if proven successful, they will reduce the need for car ownership, especially in cities, thereby reducing the volume of pollution emitting vehicles on the roads.

Vehicle testing is moving out of the laboratory in favour of real-world driving emissions testing (RDE) which will help consumers to choose genuinely ‘clean’ vehicles. However, the ultimate test of all initiatives to reduce traffic-related air pollution is the effect that they have on the air that people breathe.

Ambient air quality monitoring
Networks of fixed air quality monitoring stations provide continual data across the UK, accessible via the Defra website and the uBreathe APP. Many believe that this network contains an insufficient number of monitoring points because measurement data has to be heavily supplemented with modelling. However, these reference monitoring stations, while delivering highly accurate and precise data, are expensive to purchase, calibrate and service. They also require a significant footprint and mains electricity, so it is often difficult or impossible to locate them in the locations of most interest – the pollution hotspots.

Public sector budgets are under pressure, so the cost of running the national monitoring network and those systems operated by Local Authorities is a constant source of debate. The challenge for technology companies is therefore to develop air quality monitors that are more flexible in the locations in which they are able to operate and less costly in doing so.

Air Monitors’s response

New technology
Air Monitors has developed a small, battery-powered, web-enabled, air quality monitor ‘AQMesh’, which can be quickly and easily mounted on any lamp post or telegraph pole at a fraction of the cost of traditional monitors. Consequently, for the first time ever, it is possible to monitor air quality effectively, where it matters most; outside schools, on the busiest streets and in the places where large numbers of people live and breathe.AQMesh_podAQMesh ‘pods’ are completely wireless, using GPRS communications to transmit data for the five main air polluting gases to ‘the cloud’ where sophisticated data management generates highly accurate readings as well as monitoring hardware performance. In addition, it is now possible to add a particulate monitor to new AQMesh pods.AQMesh does not deliver the same level of precision as reference stations, but this new technology decreases the cost of monitoring whilst radically improving the availability of monitoring data, especially in urban areas where air quality varies from street to street.The flexibility of these new monitors is already being exploited by those responsible for traffic-related pollution – helping to measure the effects of traffic management changes for example. However, this new level of air quality data will also be of great value to the public; helping them to decide where to live, which routes to take to work and which schools to send their children to.