Towards a liveable Earth!

08/08/2017

Addressing global issues through co-innovation to create new value!

Yokogawa has developed sustainability goals for the year 2050 that will guide its efforts to make the world a better place for future generations.

Yokogawa’s efforts to achieve a sustainable society are in keeping with the Paris Agreement, which was adopted in 2015 by the 21st Framework Convention on Climate Change (COP21) to provide a basis for global efforts to tackle issues related to climate change. The agreement calls for the achievement of net-zero greenhouse gas emissions by the second half of this century. Also in 2015, the UN adopted the 2030 Agenda for Sustainable Development centering on the Sustainable Development Goals (SDGs). Through these initiatives, a global consensus is developing on how to address these issues, and the direction that companies should take is becoming clear.

Yokogawa’s efforts to achieve sustainability and build a brighter future for all are based on the company’s corporate philosophy, which states: “As a company, our goal is to contribute to society through broad-ranging activities in the areas of measurement, control, and information. Individually, we aim to combine good citizenship with the courage to innovate.” To ensure a flexible response to environmental and technology changes and guide its long-term efforts to address social issues, Yokogawa is committing itself to the achievement of goals that are based on a vision of where our society should be by the year 2050. Through the selection of products and solutions and the formulation of medium-term business plans and the like that are based on environmental, economic, and societal considerations, Yokogawa will carry out the detailed tasks needed to achieve these goals.

Commenting on this initiative, Takashi Nishijima, Yokogawa President and CEO, says: “Companies have a growing responsibility to respond to issues such as population growth and the rising use of fossil fuels that are addressed in the Paris Agreement and the SDGs. Yokogawa provides solutions that improve the stability, efficiency, and safety of operations at industrial plants and other infrastructure facilities by, for example, speeding up processes, reducing workloads, and saving energy. Yokogawa needs to work harder to broaden its solutions so that it can address other issues that impact our society. Yokogawa will establish key performance indicators (KPIs) to evaluate on a medium-term basis the achievement of its sustainability goals, and will continue to create new value through co-innovation with its stakeholders.”


Statement on Yokogawa’s aspiration for sustainability
Yokogawa will work , to achieve net-zero emissions, to make a transition to a circular economy, and ensure the well-being of all by 2050,  thus making the world a better place for future generations.

We will undergo the necessary transformation to achieve these goals by 1. becoming more adaptable and resilient, 2. evolving our businesses to engage in regenerative value creation, and 3. promoting co-innovation with our stakeholders.

Achieve net-zero emissions; stopping climate change
Climate change is an urgent issue that requires a global response. We aim for net-zero emissions, which means that the greenhouse gas concentrations in the atmosphere do not rise due to the balance of emissions and the absorption of greenhouse gases, which can be accomplished through the introduction of renewable energy and efficient use of energy. We are also working to reduce the impact of natural disasters and respond to biodiversity issues.

Make the transition to a circular economy; circulation of resources and efficiency
The transformation from a one-way economy based on the take, make, and dispose model to an economy where resources are circulated without waste, and the transition to businesses that emphasize services, is under way. We aim to realize a social framework and ecosystem in which various resources are circulated without waste and assets are utilized effectively. We are also contributing to the efficient use of water resources and the supply of safe drinking water.

Ensure well-being; quality life for all
With the aim of achieving the physical, mental, and social well-being described in the 2030 Agenda for Sustainable Development adopted by the United Nations in 2015, we support people’s health and prosperity through the achievement of safe and comfortable workplaces and our pursuits in such areas as the life sciences and drug discovery. We promote human resource development and employment creation in local communities, alongside diversity and inclusion.

 

@YokogawaIA #PAuto @UNFCCC
Advertisements

The ‘ins and outs’ of air quality monitoring!

20/02/2017
The British National Institute for Health and Care Excellence (NICE) recently issued draft guidance on ‘Air pollution – outdoor air quality and health.’ 

Here, Jim Mills, Managing Director of Air Monitors Ltd, explains why there will need to be more funding for monitoring if the mitigation measures mentioned in the guidance are to be implemented effectively. Jim also highlights the close relationship between outdoor air quality and the (often ignored) problems with indoor air quality.

The NICE guidelines are being developed for Local Authority staff working in: transport, planning, air quality management and public health. The guidance is also relevant for staff in healthcare, employers, education professionals and the general public.

Covering road-traffic-related air pollution and its links to ill health, the guidelines aim to improve air quality and so prevent a range of health conditions and deaths. Unfortunately, on the day that the draft guideline was published, most of the national media focused on one relatively minor recommendation relating to speed bumps. ‘Where physical measures are needed to reduce speed, such as humps and bumps, ensure they are designed to minimise sharp decelerations and consequent accelerations.’ Measures to encourage ‘smooth driving’ are outlined; however, the guidelines also address a wide range of other issues, which, in combination, would help tackle urban air pollution.

Public sector transport services should implement measures to reduce emissions, but this is an area that could involve the greatest financial cost.

Many local authorities would doubtless comment that they are already implementing many of the guideline recommendations, but refer to budgetary constraints on issues that involve upfront costs. This issue was raised on BBC Radio 4 when the issue was discussed on 1st December.

AQMesh Pod

AQMesh Pod

The NICE guidelines recommend the inclusion of air quality issues in new developments to ensure that facilities such as schools, nurseries and retirement homes are located in areas where pollution levels will be low. LAs are also urged to consider ways to mitigate road-traffic-related air pollution and consider using the Community Infrastructure Levy for air quality monitoring. There are also calls for information on air quality to be made more readily available.

LAs are also being urged to consider introducing clean air zones including progressive targets to reduce pollutant levels below the EU limits, and where traffic congestion contributes to poor air quality, consideration should be given to a congestion charging zone. The guidelines also highlight the importance of monitoring to measure the effects of these initiatives.

As part of the consultation process, NICE is looking for evidence of successful measures and specifically rules out “studies which rely exclusively on modelling.”

In summary, all of the initiatives referred to in the NICE report necessitate monitoring in order to be able to measure their effectiveness. However, most LAs do not currently possess the monitoring capability to do so. This is because localised monitoring would be necessary before and after the implementation of any initiative. Such monitoring would need to be continuous, accurate and web-enabled so that air pollution can be monitored in real-time. AQMesh is therefore the ideal solution; small, lightweight, quick and easy to install, these air quality monitors are able to monitor all the main pollutants, including particulates, simultaneously, delivering accurate data wirelessly via the internet.

Whilst AQMesh ‘pods’ are very significantly lower in cost both to buy and to run than traditional reference stations, they still represent a ‘new’ cost. However any additional costs are trivial in comparison with the costs associated with the adverse health effects caused by poor air quality, as evidenced in the recent report from the Royal College of Physicians.

Inside Out or Outside In?

Fidas® Frog

Fidas® Frog

The effects of air pollution are finally becoming better known, but almost all of the publicity focuses on outdoor air pollution. In contrast, indoor air quality is rarely in the media, except following occasional cases of Carbon Monoxide poisoning or when ‘worker lethargy’ or ‘sick building syndrome’ are addressed. However, it is important to understand the relationship between outdoor air quality and indoor air quality. Air Monitors is currently involved in a number of projects in which air quality monitoring is being undertaken both outside and inside large buildings, and the results have been extremely interesting.

Poorly ventilated offices tend to suffer from increased Carbon Dioxide as the working day progresses, leading to worker lethargy. In many cases HVAC systems bring in ‘fresh’ air to address this issue, but if that fresh air is in a town or city, it is likely to be polluted – possibly from particulates if it is not sufficiently filtered and most likely from Nitrogen Dioxide. Ventilating with outdoor air from street level is most likely to bring air pollution into the office, so many inlets are located at roof level. However, data from recent studies indicate that the height of the best air quality can vary according to the weather conditions, so it is necessary to utilise a ‘smart’ system that monitors air quality at different levels outside the building, whilst also monitoring at a variety of locations inside the building. Real-time data from a smart monitoring network then informs the HVAC control system, which should have the ability to draw air from different inlets if available and to decide on ventilation rates depending on the prevailing air quality at the inlets. This allows the optimisation of the internal CO2, temperature and humidity whilst minimising the amount of external pollutants brought into the indoor space. In circumstances where the outside air may be too polluted to be used to ventilate, it can be pre-cleaned by scrubbing the pollutant gases in the air handling system before being introduced inside the building.

Fidas200The implementation of smart monitoring and control systems for buildings is now possible thanks to advances in communications and monitoring technology. AQMesh pods can be quickly and easily installed at various heights outside buildings and further units can be deployed internally; all feeding near-live data to a central control system.

Another example of indoor air quality monitoring instrumentation developing from outdoor technology is the ‘Fidas Frog,’ a new fine dust aerosol spectrometer developed by the German company Palas. The Frog is an indoor, wireless, battery-powered version of the hugely popular, TÜV and MCERTS certified Fidas 200. Both instruments provide simultaneous determination of PM fractions, particle number and particle size distribution, including the particle size ranges PM1, PM2.5, PM4, PM10 and TSP.

Evidence of outdoor air pollution contaminating indoor air can be obtained with the latest Black Carbon monitors that can distinguish between the different optical signatures of combustion sources such as diesel, biomass, and tobacco. The new microAeth® MA200 for example, is a compact, real-time, wearable (400g) Black Carbon monitor with built-in pump, flow control, data storage, and battery with onboard GPS and satellite time synchronisation. Samples are collected on an internal filter tape and wireless communications are provided for network or smartphone app integration and connection to other wireless sensors. The MA200 is able to monitor continuously for 2-3 weeks. Alternatively, with a greater battery capacity, the MA300 is able to provide 3-12 months of continuous measurements.

In summary, a complete picture of indoor air quality can be delivered by a combination of AQMesh for gases, the Palas Frog for particulates and the microAeth instruments for Black Carbon. All of these instruments are compact, battery-powered, and operate wirelessly, but most importantly, they provide both air quality data AND information on the likely source of any contamination, so that the indoor effects of outdoor pollution can be attributed correctly.

@airmonitors #Environment #PAuto @_Enviro_News


Particulate monitors selling like hot cakes.

03/12/2016

Palas, the German manufacturer of particulate monitoring instruments, is expanding production to cope with demand for its fine particulate monitor, the Fidas® 200. In the following article Jim Mills explains why Air Monitors, the British distributor, is being kept busy by the demand for this exciting new technology.

fidas_200PM monitoring – the ultimate goal
We monitor PM because of its acute health effects. It irritates our eyes and lungs, and some of the finer particles were more recently shown to be able to move directly from the nasal cavity to the brain. Monitoring is therefore essential, but there are almost as many monitoring methods as there are types of PM, so it is vitally important to monitor what matters. If you are measuring dust from a construction site, the PM is relatively large in diameter and heavy, but if you are monitoring PM from diesel emissions in a city, the smallest particles with much less mass but high particle numbers, are of greater interest. Monitoring a single size fraction provides an incomplete picture of particulate contamination and risks ignoring the PM of most interest, particularly if the ignored fractions are the finer particles that travel deepest into the lungs. The ideal PM monitor would therefore reliably and accurately monitor all important PM fractions, with high data capture rates and low service requirements… hence the heavy demand for the Fidas 200.

Fidas® 200
The Fidas 200 is a fine dust ambient air quality monitoring device, developed specifically for regulatory purposes; providing continuous and simultaneous measurement of PM1, PM2.5, PM4, PM10, TSP (PMtot), as well as particle number concentration and particle size distribution between 180nm and 18µm (further non-certified size ranges are also available on request).

Employing a well-established measurement technology – optical light scattering of single particles – the Fidas 200 is equipped with a high intensity LED light source, which is extremely stable, delivering a long lifetime, with minimal service requirements. An optical aerosol spectrometer determines the particle size using Lorenz‐Mie scattered light analysis of single particles. These particles move through an optical measurement volume that is homogeneously illuminated with white light, and each particle generates a scattered light impulse that is detected at an angle of 85° to 95° degrees. The particle number measurement is based on the number of scattered light impulses, and the level of the scattered light impulse is a measure of the particle diameter.

The Fidas 200 operates with a volume flow of approx. 0.3m3/h and is equipped with a Sigma‐2 sampling head, which enables representative measurements even under strong wind conditions. The sampling system includes a drying system that prevents measurement inaccuracies caused by condensation from high humidity, which means that it will continue to function correctly in misty or foggy conditions but without the loss of semi-volatile fractions of the PM. It is also equipped with a filter holder for the insertion of a plane filter (47 or 50 mm in diameter) which enables subsequent chemical analysis of the aerosol.

Different versions of the Fidas 200 allow for stand-alone outdoors installation or for installation inside a measurement cabinet or air quality monitoring station.

Performance
The Fidas 200 is the only ambient continuous PM monitor in the UK to have passed TÜV and MCERTS. The MCERTS certificate (Sira MC16290/01) confirms that the Fidas 200 complies with the MCERTS Performance Standards for Continuous Ambient Air Quality Monitoring Systems, and with MCERTS for UK Particulate Matter. The instrument has type-approval to the Standards EN 12341 (PM10), EN 14907 (PM2.5) and is certified to the Standards EN 15267-1 and -2.

Importantly, the FIDAS 200 has half the uncertainty of many of its rivals and one third of the required uncertainty (25%).

Typical data capture rates exceed 99%. This has been achieved by a design approach that is focused on reliability. For example, two pumps operate in parallel, providing redundancy protection, and the instrument continuously monitors status and calibration.

Monitoring frequency has an adjustable time resolution ranging from 1 second up to 24 hours. However, high frequency data provides almost real-time access to readings when deployed with a remote web-enabled Envirologger. This enables the detection of short-term spikes, providing much greater insight into the causes of PM pollution.

The Fidas instruments have been proven in many countries as well as Britain; Air Monitors has been supplying Fidas PM monitors for around three years and there are now over 30 monitors in operation Britain alone.

Costs
One of the major financial considerations for Fidas 200 is its extremely low operating cost; the requirement for consumables is almost nil (no filter required) and its power consumption is around one fifth of its nearest rival. Calibration can be checked and adjusted, if necessary, quickly and easily in the field with a simple monodisperse powder test.

The purchase cost of a single Fidas 200 is a little more than some ambient PM monitors, but it is less expensive than others. However, for most instruments, a requirement to monitor two fractions, say PM2.5 and PM10, would necessitate two instruments and therefore double the cost. With budgets under pressure, Fidas therefore provides an opportunity to obtain better data for less cost.

In summary, the Fidas 200 offers better performance than all of its rivals; usually at significantly lower capital cost and always with dramatically lower operational costs. Consequently, it is no surprise that these instruments are selling like hot cakes.

@airmonitors #PAuto @_Enviro_News


Creating 1000 times more power with submersible load measuring pins.

22/07/2016
“Our DBEP load measuring pins and DSCC pancake load cells were ideal to use in this marine application, as both can be readily customised, including dimensions and IP ratings, to make them fully submersible” says Ollie Morcom, Sales Director of Applied Measurements Ltd.

Ocean and tidal currents are a sustainable and reliable energy system. Minesto’s award winning product Deep Green converts tidal and ocean currents into electricity with minimal visual and environmental impact. Minesto’s Deep Green power plant is the only marine power plant that operates cost efficiently in areas with low velocity currents.

DBEP

Pre-assembly of DBEP pin on Deep Green

DBEP Load Pin
• Fully Customisable
• IP68 to Depths of 6500 Metres Available!
• Stainless Steel – Ideal for Marine Applications
Minesto needed to measure the strut force in Deep Green’s kite assembly. The measuring device needed to withstand permanent underwater submersion. “Our load measuring pin’s stainless steel construction and ability to be customised to IP68 submersion rating made this the ideal choice for use in Deep Green’s control system”, explains Ollie Morcom, Applied Measurements’ Sales Director. Their 17-4 PH stainless steel construction makes them perfect for marine and seawater applications. The DBEP load measuring pin was modified to have an IP68 protection rating to a depth of 30 metres and was fitted with a polyurethane (PUR) submersible cable and cable gland, ensuring the entire measuring system was suitable for this underwater marine application.

Deep-Green-cu-219x300The load measuring pin needed to fit within Deep Green’s control measuring system. The load measuring pin’s dimensions can be customised to suit a specific design. As Deep Green needed to retain its small and lightweight construction, the DBEP load measuring pin was manufactured to their exact dimensions, ensuring that it fitted within the control assembly without adding unnecessary additional weight to the structure, thus maintaining the efficiency of the Deep Green kite.

What is Deep Green?
Deep Green is an underwater kite assembly with a wing and a turbine, attached by a tether to a fixed point on the ocean bed. As the water flows over the kite’s wing, the lift force from the water current pushes the kite forward. The rudder steers the kite in a figure of 8 trajectory enabling Deep Green to reach a velocity 10 times faster than the water current, generating 1000 times more power. As the water flows through the turbine, electricity is produced in the gearless generator. The electricity is transmitted through the cable in the tether and along subsea cables on the seabed to the shore. Customised versions of our DBEP load measuring pins and DSCC pancake load cells are used within the control system of the kite.

DSCC_Pancake_Cell

DSCC Pancake Cell

DSCC Pancake Load Cell
• Fully Customisable
• Low Physical Height
•Optional: IP67, IP68 and Fatigue Rated Versions Available
• High Accuracy: <±0.05%/RC
Minesto also needed to monitor the varying tension load of the tether created by the wing. Using our high accuracy DSCC pancake load cells we were again able to make a custom design to fit into their existing assembly. Our pancake load cells are also manufactured from stainless steel and can be modified with alternative threads, custom dimensions, mounting holes, higher capacities and higher protection ratings. The DSCC pancake load cell used in Minesto’s marine power plant was IP68 rated for permanent submersion in seawater to 50 metres depth. The pancake load cells design delivers excellent resistance to bending, side and torsional forces and its low profile makes it ideal where a low physical height is required.

ICA2H Miniature Load Cell Amplifier
Within the pancake load cell we fitted a high performance ICA2H miniature load cell amplifier. The ICA2H miniature amplifier is only Ø19.5mm and 7.6mm high and is designed to fit inside a broad range of strain gauge load cells where a larger amplifier cannot. It has a low current consumption and delivers a 0.1 to 5Vdc high stability output. Using an integrated miniature amplifier kept Deep Green’s control assembly small and lightweight. The ICA2H miniature amplifier was chosen because of its high stability and fast response which is essential for the safe and efficient operation of Deep Green.

“We really enjoyed working with Minesto on this fantastic marine project.”

@AppMeas #PAuto #Power

Air pollution – the invisible roadside killer.

14/12/2015

The VW emissions scandal has helped to raise awareness of the deadly threat posed by air pollution in many of our towns and cities. In the following article, Jim Mills, Managing Director of Air Monitors, an instrumentation company, explains why diesel emissions will have to be lowered and how the latest monitoring technology will be an essential part of the solution.

Background
The World Health Organisation has estimated that over 500,000 Europeans die prematurely every year as a result of air pollution – especially fine particulates from combustion processes and vehicles. Of these, around 30,000 are in Britain; however, experts believe that the figures could be substantially higher if the effects of Nitrogen Dioxide (NO2) are also taken into consideration.

London Smog - now less visible!

London Smog – now less visible!

Historically, air pollution was highly visible, resulting in air pollution episodes such as the Great London Smog in 1952. However, today’s air pollution is largely invisible (fine particulates and NO2 for example), so networks of sophisticated monitors are necessary.

The greatest cause for alarm is the air quality in our major towns and cities where vehicles (main diesels) emit high levels of NO2 and particulates in ‘corridors’ that do not allow rapid dispersion and dilution of the pollutants. Urban vehicles also emit more pollution than free-flowing traffic because of the continual stopping and starting that is necessary.

As a result of its failure to meet European air quality limits, the Government was taken to the UK Supreme Court in April 2015 by ClientEarth, an organisation of environmental lawyers. In a unanimous judgement against Defra (English Department for Environment, Food and Rural Affairs), the Court required the urgent development of new air quality plans. In September 2015 Defra published its Draft Air Quality Plans, but they have not been well received; respondents have described them as disappointing and unambitious. CIWEM (The Chartered Institution of Water and Environmental Management) , an organisation representing environmental management professionals, for example, said: (the plans) “rely on unfunded clean air zones and unproven vehicle emission standards.”

Some commentators believe that Defra should follow Scotland’s lead, following the publication, in November 2015, of ‘Cleaner Air for Scotland – The Road to a Healthier Future’ (CAFS). Key to this strategy is its partnership approach, which engages all stakeholders. Under CAFS, the Scottish Government will work closely with its agencies, regional transport partnerships, local authorities (transport, urban and land-use planners and environmental health), developers, employers, businesses and citizens. CAFS specifies a number of key performance indicators and places a heavy emphasis on monitoring. A National Low Emission Framework (NLEF) has been designed to enable local authorities to appraise, justify the business case for, and implement a range of, air quality improvement options related to transport (and associated land use).

Traffic-related air pollution
In addition to the fine particulates that are produced by vehicles, around 80% of NOx emissions in areas where Britain is exceeding NO2 limits are due to transport. The largest source is emissions from diesel light duty vehicles (cars and vans). Clearly, there is now enormous pressure on vehicle manufacturers to improve the quality of emissions, but urgent political initiatives are necessary to address the public health crisis caused by air pollution.

A move to electric and hybrid vehicles is already underway and developments in battery technology will help improve the range and performance of these vehicles, and as they become more popular, their cost is likely to lower. The prospect of driverless vehicles also offers hope for the future; if proven successful, they will reduce the need for car ownership, especially in cities, thereby reducing the volume of pollution emitting vehicles on the roads.

Vehicle testing is moving out of the laboratory in favour of real-world driving emissions testing (RDE) which will help consumers to choose genuinely ‘clean’ vehicles. However, the ultimate test of all initiatives to reduce traffic-related air pollution is the effect that they have on the air that people breathe.

Ambient air quality monitoring
Networks of fixed air quality monitoring stations provide continual data across the UK, accessible via the Defra website and the uBreathe APP. Many believe that this network contains an insufficient number of monitoring points because measurement data has to be heavily supplemented with modelling. However, these reference monitoring stations, while delivering highly accurate and precise data, are expensive to purchase, calibrate and service. They also require a significant footprint and mains electricity, so it is often difficult or impossible to locate them in the locations of most interest – the pollution hotspots.

Public sector budgets are under pressure, so the cost of running the national monitoring network and those systems operated by Local Authorities is a constant source of debate. The challenge for technology companies is therefore to develop air quality monitors that are more flexible in the locations in which they are able to operate and less costly in doing so.

Air Monitors’s response

New technology
Air Monitors has developed a small, battery-powered, web-enabled, air quality monitor ‘AQMesh’, which can be quickly and easily mounted on any lamp post or telegraph pole at a fraction of the cost of traditional monitors. Consequently, for the first time ever, it is possible to monitor air quality effectively, where it matters most; outside schools, on the busiest streets and in the places where large numbers of people live and breathe.AQMesh_podAQMesh ‘pods’ are completely wireless, using GPRS communications to transmit data for the five main air polluting gases to ‘the cloud’ where sophisticated data management generates highly accurate readings as well as monitoring hardware performance. In addition, it is now possible to add a particulate monitor to new AQMesh pods.AQMesh does not deliver the same level of precision as reference stations, but this new technology decreases the cost of monitoring whilst radically improving the availability of monitoring data, especially in urban areas where air quality varies from street to street.The flexibility of these new monitors is already being exploited by those responsible for traffic-related pollution – helping to measure the effects of traffic management changes for example. However, this new level of air quality data will also be of great value to the public; helping them to decide where to live, which routes to take to work and which schools to send their children to.

Energy efficient obsolete technology has a new name.

15/11/2015

You may already be familiar with the phrase ‘Eco Obsolete Technology’ (EOT), but you may not be aware of what it refers to or how it came about. The phrase was created by obsolete automation components supplier, European Automation as a way of referring to obsolete technology that is energy efficient and therefore compliant with the latest energy efficiency standards.

EPA272The lion’s share of European Automation’s sales comes from obsolete industrial automation parts that can be several decades old. In recent years, European Automation’s sales team noticed an increase in the energy efficiency requirements of its clients, as a result of tightening energy regulations for industry. The concept of Eco Obsolete Technology was born out of the need to make conversations with clients easier.

“With international standards such as ISO 50001 and programmes like the Ecodesign Directive and the Energy Savings Opportunity Scheme, being energy efficient is as important as being cost efficient to many plant managers,” explains Jonathan Wilkins, marketing director of European Automation. “Implementing Eco Obsolete Technology fulfils both objectives, reducing your carbon footprint whilst avoiding a costly system upgrade.

“Over specification is a historic issue in the world of industrial automation, especially when it comes to motors. It is not until the equipment is tested by a lead assessor that energy efficiency questions start being asked.”

“Many business owners think that cutting their carbon footprint will prove costly. In fact, by implementing Eco Obsolete Technology in your facility, you can significantly improve your efficiency for a considerably smaller cost,” explains Jeremy Lefroy, current MP for Stafford constituency. “Across the UK, many manufacturers are already using Eco Obsolete Technology without knowing it. By giving this type of technology a name, European Automation is reaching out to the industry as a whole and encouraging the conversation on energy efficiency.”


European Automation can provide almost any spare EOT part to be retrofitted into a system. With a vast network of authorised suppliers, European Automation sources and delivers energy efficient obsolete parts anywhere in the world in record time. European Automation also publishes online magazine, AUTOMATED, which focuses on industry specific content such as special reports and useful guides. The magazine is published in print every three months.

@EUAuto #EOT #Environment #PAuto


Countdown to February 2016 – Preparing for CEC Level VI.

09/10/2015

Jon Vallis – Sales and Marketing Manager, Ideal Power, discusses the impending regulations.

Successes in reducing the no-load power of external power supplies has resulted in estimated savings of 32billionKW in energy consumption, a reduction in CO² emissions by more than 24million tons and an annual saving of $2.5billion – €2.2bn or £stg1.64bn – (US EPA (Environmental Protection Agency figures). These figures are impressive, and the result of a decade of regulation and programmes by the industry, both voluntary and mandatory ones. The drive for ‘greener’ energy, however, means that an upcoming standard, due to be implemented in February 2016, will further reduce the energy consumed by external power adapters. In some cases, the reductions could result in as little as 20% of the levels allowed in previous standards.

IdealPower VI logoThe CEC (California Energy Commission) Level VI standard is due to come into effect on February 10, 2016 and will bring in some significant revisions and definitions. OEM manufacturers will need to be aware of new performance thresholds, direct and indirect operation models and exemptions.

The last 10 years has seen a lot of rapid development in the reduction of power consumption by external power supplies. In 2004, the CEC introduced the first mandatory standard for energy efficiency, denoting a power supply that meets EnergyStar Tier 1 and Australia’s MEPS (Maximum Efficiency Performance Standards). The EU introduced the ErP phase 1 (Energy related Products) directive in 2010 and harmonised CEC and EISA (Energy Independence and Security Act) the following year, in the ErP Directive 2009/125/EC. Around the same time, the EnergyStar certification ceased to apply to power supplies.

Today, all external power supplies must meet CEC Level IV for the USA and Canada and Level V if shipped to the EU.

The next step, driven by CEC VI, is to further reduce no-load power in single and multiple voltage external power supplies. It introduces multiple output power supplies into the regulation and also addresses external power supplies below 250W. The standard has no-load power thresholds for single voltage, external AC/DC power supplies, low voltage and basic models, for categories of 1W and below, 49 to 250W and 250W and above. There are also limits for no-load power for multiple voltage external power supplies in the same power ranges.

Another distinction of CEC Level VI is that it does not apply to direct operation power supplies, i.e. those that function in an end product without the assistance of a battery. It does apply to indirect operation devices, i.e. those devices which are not battery chargers, but which cannot operate the end product without the assistance of a battery. EISA2007 will govern the limits of indirect operation power supplies.

Exemptions to CEC Level VI include any device that may need FDA (Food and Drug Administration) approval for medical use; power the charger of a detachable battery pack, or charges the battery of a product that is fully, or primarily, motor-operated; and products made available as a service or spare part by the end-product manufacturer before July 1 2008.

The EU is revising its EcoDesign Directive (or ErP II for energy related products) which is considered to be a parallel standard. Countries such as Canada and Australia are expected to adopt CEC Level VI.

OEMS must ensure compliance with all regulations for whichever region products are shipped to. For help in meeting the increased levels of energy saving required to comply with CEC Level VI, contact the IP Support team at Ideal Power, the power conversion experts.

Ideal Power provides external power supplies and adapters, open frame, encapsulated and DIN Rail power conversion products and battery chargers to markets including industrial, computing, medical, communications, LED Lighting, security, consumer and leisure. Products are sourced from market leading suppliers including EOS and Glary,

Ideal Power’s British based IP Support Engineering Team are available to work with customer’s design engineers to create modified-standard and full custom designs for quantities from 100 pieces upwards.  Their IP Support team has over 40 years of experience in the power supply industry and provides local assistance throughout the whole design process from concept, design, quotations, samples and testing to approvals and standards compliance, shipping, stock-holding and after-sales service.