Future factory – a moderator’s impression!

01/02/2016

Read-out was asked to moderate the automation stream at the National Manufacturing & Supplies conference held last week outside Dublin. (26th January 2016). In their wisdom the organisers selected “Future Factory!” as a title for this half day seminar and there were 11 speakers organised to speak on their particular subjects for about 15 minutes each. This was replicated in the the over a dozen different seminars held on this one day.

q#MSC16

Long queues lasted well into the morning to enter the event!

We were a little sceptical that this would work but with the help of the organisers and the discipline of the speakers the time targets were achieved. Another target achieved was the number of attendees at the event as well as those who attended this particular seminar.
In all between exhibitors, speakers and visitors well over 3000 packed the venue. Probably far more than the organisers had anticipated and hopefully a potent sign that the economy is again on the upturn. Indeed it was so successful that it was trending (#MSC16) on twitter for most of the day.

Seminar
But back to our seminar. If you google the term Future Factory you get back 207million links, yet it is difficult to find a simple definition as to what it means. The term automation similarly is a very difficult term to define though the term in Irish “uathoibriú” perhaps is a bit clearer literally meaning “self-working.”

uturefactory.jpg

Good attendance at the Seminar

Background
The world of automation has changed to an extrordinary degree and yet in other ways it remains the same. The areas where it has experienced least change is in the areas of sensing – a thermometer is a thermometer – and final control – a valve is a valve. Where it has changed almost to the point of unrecognisability is in that bit in the middle, what one does with the signal from the sensor to activate the final control element.

From single parameter dedicated Indicator/Controller/Recorders in the sixties which transmitted either pnuematically (3-15psi) or electrically (4-20mA). Gradually (relatively speaking) most instruments became electronic, smaller in size and multifunctional. The means of communication changed too and fieldbus communication became more common to intercact with computors which themselves were developing at breaknech speed. Then transmission via wireless became more common and finally the internet and the ability to control a process from the computer that we call the intelligent phone. There are problems with these latter, internet/cellphone, of course. One is that the reach of the internet is focussed at present on areas of high population. Another is the danger of infiltration of systems by hostile or mischivous strangers. The importance of security protocols is one that has only recently been apparent to Automation professionals.

• Many of the presentations are available on-line here. The password is manufac2016

The Presentations
Maria Archer of Ericsson spoke on the enabling and facilitating IoT in the manufacturing industry. Diving straight into topic she drew on her experience of big data, e-commerce, media, cyber security, IOT and connected devices.

The second speaker was Cormac Garvey of Hal Software who addressed Supply Chain prototyping. The Supply Chain ecosystem is incredibly complex, usually requiring significant integration of each suppliers’ standards and processes to the manufacturer’s. Cormac will introduce the concept of supply chain prototyping, where easy-to-use, standards-based technology is used to wireframe out the entire supply chain ecosystem prior to integration, thus significantly reducing cost, time and risk on the project. This wireframe can then be used as a model for future integration projects.

Two speakers from the Tralee Institute of Technology, Dr. Pat Doody and Dr. Daniel Riordan spoke on RFID, IoT, Sensor & Process Automation for Industry 4.0. They explained how IMaR’s (Intelligent Mechatronics and RFID) expertise is delivering for their industrial partners and is available to those aiming to become a part of Industry 4.0.

Smart Manufacturing – the power of actionable data was the topic addressed by Mark Higgins of Fast Technology. He shared his understanding of the acute issues companies face on their journey to Business Excellence and how leveraging IT solutions can elevate the business to a new point on that journey.

Assistant Professor (Mechanical & Manuf. Eng) at TCD, Dr Garret O’Donnell,   explained how one of the most significant initiatives in the last 2 years has been the concept of the 4th industrial revolution promoted by the National Academy for Science and Engineering in Germany- ACATECH, known as Industrie 4.0. (Industrie 4.0 was first used as a term in Germany in 2011).

Another speaker from Fast Technologies, Joe Gallaher, addressed the area of Robotics and how Collaborative Robots are the “Game Changer” in the modern manufacturing facility.

Dr. Hassan Kaghazchi of the University of Limerick and Profibus spoke on PROFINET and Industrie 4.0. Industrial communications systems play a major role in today’s manufacturing systems. The ability to provide connectivity, handle large amount of data, uptime, open standards, safety, and security are the major deciding factors. This presentation shows how PROFINET fits into Industrial Internet of Things (Industrie 4.0).

White Andreetto

Maurice Buckley CEO NSAI

The CEO of NSAI, the Irish National Standards Authority, Maurice Buckley explained how standards and the National Standards Authority of Ireland can help Irish businesses take advantage of the fourth industrial revolution and become more prepared to reap the rewards digitisation can bring.

The next two speakers stressed the impact of low forecast accuracy on the bottom line and how this coulbe be addressed. Jaap Piersma a consultant with SAS UK & Ireland explained that low forecast accuracies on the business performance is high in industry but with the right tools, the right approach and experienced resources you can achieve very significant result and benefits for your business. Following him Dave Clarke, Chief Data Scientist at Asystec, who mantains the company strategy for big data analytics service development for customers. He showed how are incredible business opportunities possible by harnessing the massive data sets generated in the machine to machine and person to machine hyper connected IoT world.

The final speaker David Goodstein, Connected Living Project Director, GSMA, described new form factor mobile SIMs which are robust, remotely manageable which are an essential enabler for applications and services in the connected world.

All in all a very interesting event and useful to attendees. Papers are being collected and should be available shortly on-line.

It is hoped to do it all again next year on 24th January 2017- #MSC17.

See you there.

@NationalMSC #MSC16 #PAuto #IoT


What’s the future for the electronics instrumentation sector?

11/12/2015

Looking back at the past 10-15 years of the electronic instrumentation industry, it is certainly disappointing to realize that the market for new test equipment in 2015 is about the same size or less. What does this tell us and will the industry perform better in the future?

Recently, Frost & Sullivan published three market insights about the future of the electronic industry and what will determine it, where the new opportunities for growth are, and how to stay profitable in changing economical environment.

These market insights are listed below:

Jessy_Cavazos

Jessy Cavazos – Frost & Sullivan

“In the past decade, the electronics instrumentation industry did not maximize the revenue opportunity coming from the move towards connectivity and the proliferation of electronics as most companies missed out on dramatic changes happening in the customer base,” says Jessy Cavazos, Industry Director for Test & Measurement, Frost & Sullivan.

Over the next 5-10 years, 5G and other technologies will take the electronics instrumentation market to higher frequencies spelling significant growth opportunities for test manufacturers. The move towards a more connected, zero-latency, and autonomous world will certainly provide room for growth for the electronic instrumentation market. With the Internet of Things (IoT), a myriad of devices will be connected to the Internet. While low latency will not be provided for all applications and devices in the short term due to costs, the desire for low or no latency for a number of devices and applications is here and will provide opportunities to test manufacturers.

While wireless communications and aerospace and defense will remain significant end-user segments for electronic test and measurement equipment, demand is likely to increase in smaller end-user segments such as automotive and industrial electronics due to the greater integration of wireless technology in various devices.

The world is also on the path to become more autonomous with mobile robots, drones, and autonomous cars. While all of these technologies will translate into demand for electronic instrumentation, some, such as the autonomous car, will generate significant opportunities for test manufacturers due to the onus put on safety. Leading automotive OEMs are currently embracing automated driving translating into significant R&D opportunities for test manufacturers.

The hyper connectivity of customers will also call for a greater focus from test manufacturers on their go-to-market channels. While online channels have grown in importance for mid and low-end test equipment, this trend is also relevant to more high-end expensive test equipment from a digital marketing perspective.

“The next decade will not come without challenges for the electronics instrumentation industry. However, trends are favorable to the future growth of the electronic test and measurement market. Test manufacturers must not only be aware of the evolution of technologies and related test requirements but also expand their horizons to understand the impact of other trends on their business,” summarised Ms. Cavazos.


Demand for IoT testing and monitoring equipment.

28/06/2015

As the trend towards connected living and the Internet of Things (IoT) continues to permeate home, work and city solutions, the need to keep tabs on a myriad of connected devices will thrust the global IoT testing and monitoring equipment market into the spotlight. The incorporation of machine-to-machine (M2M) communication – central to IoT deployment – as well as modules that require less power and bandwidth will bring with it several challenges that turn into a boon for testing and monitoring vendors.

New analysis from Frost & Sullivan, Global fands Equipment Market, finds that the market earned revenues of $346.9 million in 2014 and estimates this to reach $900.1 million in 2021.

“As the escalating number of connected devices adds breadth to the IoT concept, solutions that can proactively monitor, test and zero in on anomalies in the infrastructure will garner a sustained customer base,” said Frost & Sullivan Measurement and Instrumentation Research Analyst Rohan Joy Thomas. “The incorporation of new testing and wireless standards will broaden testing requirements and further aid development in IoT testing and monitoring equipment.”

Educating end users on the importance of interoperability and the requirement for specialised testing equipment is vital for market success. Currently, the lack of end-user awareness on the need for proactive solutions stalls the large-scale use of IoT testing and monitoring equipment. End-user inability to identify the most appropriate solution from a plethora of identical systems too limits adoption.

High capital expenditure associated with procuring equipment coupled with inadequate standardisation around IoT adds to the challenge. Such concerns over high investment costs and standardisation should abate as IoT matures in the years ahead.

“Industry vendors must fill the gaps in their product portfolio in order to facilitate an open testing environment and lay the foundation for long-term growth,” concluded Thomas. “To that end, building partnerships with or acquiring participants from other industry niches will help solution providers extend their horizons in the global IoT testing and monitoring equipment market.”


Monitoring nuclear waste legacy ponds!

22/04/2014

Following a rigorous assessment period, EXO water quality monitoring sondes from Xylem Analytics are being deployed in what is arguably one of the most hostile environments imaginable – nuclear waste legacy storage ponds at the Sellafield nuclear reprocessing site in Cumbriain the North West of England.

Background
One of the major challenges facing Sellafield Ltd is the safe decommissioning of the First Generation Magnox Storage Pond (FGMSP), a nuclear fuel storage facility that was originally built in the 1950s and 1960s as part of Britain’s expanding nuclear programme to receive and store, cool irradiated Magnox fuel prior to reprocessing.

In the 1970s a lengthy shutdown at the Magnox Reprocessing Plant, combined with increased throughput of fuel due to electricity shortages, spent fuel to be stored in the pond for longer than the designed period which led to increased fuel corrosion and radiation levels.

Over the years the pond has accumulated significant quantities of waste materials, sludges from corrosion of fuel cladding, skips of fuel, and fuel fragments and other debris which has blown into the pond. Standing above ground, this 5m deep open pond holding some 14,000 cubic metres of contaminated water (approximately the size of two Olympic swimming pools) is considered a decommissioning priority. To assist with future retrievals, a detailed knowledge of the facility’s inventory through visual inspection of the pond is needed.

Despite high levels of radioactivity, this open pond appears to intermittently bloom with a range of microorganisms that cloud the water, reducing visibility and hampering inspection and retrieval operations.

Sellafield Ltd is the company responsible for safely delivering decommissioning, reprocessing and nuclear waste management activities on behalf of the Nuclear Decommissioning Authority (NDA), and a project team led by Xavier Poteau has specific responsibility for transferring monitoring technologies to the FGMSP pond.

FGMSP Pond (Image supplied courtesy of Sellafield Ltd)

Water passing through the pond reaches the Sellafield Ion Exchange Effluent Plant (SIXEP) which removes radioactivity from liquid feeds from a number of plants across the Sellafield site. The plant settles out and filters solids using a carbonation process to neutralise the alkaline pond water and then employs ion exchange to remove radionuclides.

Why monitor?
Water samples are routinely collected from the pond for laboratory analysis, and analytical data is reported to the Environment Agency and the NDA. In addition to this regulatory requirement, water quality data is also required to inform efficient operation of SIXEP and to ensure that legacy fuel is stored in optimal conditions. For example, the water is caustic dosed to maintain a pH of around 11.5 which reduces the speed of nuclear fuel degradation.

Water monitoring challenges

Preparing to test the water!

Preparing to test the water! (Image supplied courtesy of Sellafield Ltd)

As a result of physical restrictions, it has only been possible to take water samples from specific locations around the edge of the pond and, being radioactive, routine samples have to be limited to about 100ml to be within laboratories guidelines. Sampling is also an arduous, time-consuming process; two people have to be involved and each sampler has to wear a pvc suit and facemask, two pairs of pvc waterproof gloves and a pair of Kevlar gloves to ensure that the gloves are not accidentally punctured. The samplers are also only allowed to be close to the pond for a limited time.

Instrumentation might appear to be the obvious solution, but again, there are several challenges, not least of which is that gamma spectrum analysis has to be conducted on a sample in a lab. In addition, electrical instruments often fail in a radioactive environment, so the general assumption is that they will do so, unless proven otherwise. Continuous monitoring probes, similar to those employed by the water industry, are not feasible because of the wiring that would be required. However, portable instruments offer the potential to reduce the volume and frequency of water sampling.

Trials with EXO sondes
The EXO2 sondes are multiparameter 6-port water quality monitors that have been developed for remote, long-term monitoring applications. Employed globally by regulatory authorities, researchers, industrial companies and those responsible for the protection of water resources, the EXO sondes are the result of many years’ of development and feedback from thousands of users from all over the world. As a result, these instruments are lightweight and rugged, with internal batteries and datalogging capability for long-term monitoring applications. The EXO sondes operate on extremely low power and incorporate a range of features that minimise maintenance requirements and avoid biofouling. For example: wet-mateable connectors resist corrosion; components are isolated to prevent short-circuits; welded housings and double o-rings prevent leaks, and high-impact plastic and titanium resists impact damage.

The ‘smart’ EXO sensors are easily interchangeable and users are able to select the sensors that best meet their needs. The FGMSP project team, for example, uses sensors for pH, temperature, conductivity, turbidity, fDOM (Fluorescent Dissolved Organic Matter – a surrogate for Coloured DOM), Blue-green Algae and Chlorophyll.

Initially, the FGMSP project team trialled an extended deployment version of the YSI 6600 multiparameter water quality monitoring sonde – a predecessor of the EXO. “This enabled us to assess the quality of the YSI sensors and demonstrate that they were able to operate well in a radioactive environment,” comments Technical Specialist Marcus Coupe, adding: “The launch of the EXO was of great interest to us because, with Bluetooth communications and smart sensors that retain their calibration data, the EXO offered an opportunity to dramatically reduce time spent at the pond.

“The snap-on probes are calibrated in the laboratory and can then be quickly and simply swapped with those that have been deployed on an EXO sonde. This means that the main part of the sonde can be left onsite while the sensors are quickly swapped, and the Bluetooth comms enable us to collect 18,600 sets of data in less than 20 minutes.”

Commenting further on the success of the EXO trials, Xavier Poteau says: “It has been common experience in the nuclear industry to have to apply significant adaptations to electrical equipment, so that it is able to function correctly in a radioactive environment, and this can incur a heavy cost and time penalty. However, the EXO sondes have performed very well ‘off the shelf’ which is a sign of good design.”

ROV with EXO probe

ROV with EXO probe (Image supplied courtesy of Sellafield Ltd)

As part of their work with the EXO sondes, the FGMSP project team has deployed an EXO sonde with a submersible remotely operated vehicle (ROV). This enabled the team to monitor water quality at previously unachievable locations. “Any loss of visibility in the pond can potentially cause a significant risk to operations within the legacy ponds, as well as potentially slowing down future retrievals, so the ability to deploy an EXO with a ROV offers a valuable insight into understanding the challenge, and moves us from single point sampling to a more 3D-like data stream,” adds Marcus Coupe.

Looking forward
Neill Cornwell from Xylem Analytics has been involved with the trials at Sellafield from the start. He says: “A lot of hard work has gone into the process of demonstrating EXO’s suitability for deployment in the nuclear sector; not only has the equipment had to perform well in challenging conditions, but we have also had to demonstrate a high level of technical and service support.

“Naturally, we are very pleased that the sondes have performed so well, and further instruments are now being deployed in other applications at the Sellafield site. For example, a slimmer version of the EXO, the EXO1, is being used to monitor the effluent distribution tanks because the only access is via narrow pipes and the EXO1 is ideal because its outer diameter is just 1.85 inches.”

The data from the FGMSP sondes compare favourably with the results of laboratory analysis, so Xavier Poteau believes “a high level of confidence is being established in the EXO data and this means that we will be able to reduce the amount of sampling that we undertake, which will save a great deal of time, hassle and money.

“I strongly believe that our experience could be beneficial to the wider audience as well as the nuclear industry.”

EXO2_titanium_bulkhead

EXO2 Titanium Bulkhead


So much geek at NIWeek! A virtual attendee reports virtually!

12/08/2013

Engineers are the future. Keep inspiring another generation!

David Bocanegra - “EV3 software is awsome…”

David Bocanegra – “EV3 software is awsome…”

We have never been able to manage to get to NI Week, which is held annually in Austin Texas, more than 4000 miles away from Ireland as the crow flies. However we have been able to attend vicariously, via twitter, the live-streaming of keynotes and the blogs and releases issued during and immediately afterwards.

It has sometimes been said that in one way it is better to watch the twitter feeds than actually being there! It can certainly be as demanding on time and looking at a computer screen can be pretty exhausting. Indeed with the advance of hand-held units, iPads and phones, which can be connected all the time, the quantity, if not always the quality, of tweets was fairly intense. Of course its great disadvantage is the inability to provide the experience of face to face social intercourse, (nor the sometimes unpleasant aftermath of too-late nights!)

We have gathered the links to articles, blogs and pr material as we became aware of them and put them in a box on our Home Page to assist the busy engineer, nerd or geek who wanted a quick place to see these without having to trawl through what seemed like thousands of tweets. We have included that box below this article.

tweetingliveTweet overload!
The enthusiasm of these National Instruments events is legendary and it continually seeped through these social media sharings. Things like “My biggest takeaway from every #niweek keynote: science and engineering are freakin cool!” (@TheRealAdamKemp ) or “Dr T kicked off #NIWeek 2013 by talking about Graphical System Design, Industry 4.0 and Cyber-Physical systems (oh, and bagpipe tuners!)” (@mjg73 ) and “My twitter news feed is blown up because of #niweek🙂 totally not complaining! LOVE the new #roboRIO (so jealous I don’t get to use it)” (@alexkay4235 ). Another reported “Nearly 4,000 attendees packed in for the #NIWeek conference with over 1,000 streaming online!..” And more wonder & delight, “3rd year here, and the #NIWeek keynote intro still raises the hair on my neck!” (@Backerthebiker) or “Dang! Opening video presentation at #NIWeek 2013 was AWESOME! Kicking off this year’s conference with a big boom.” (@lindseyjo23); “Ready for another day of great madness! Love #NIweek” (@Fabiola31416).

Dr James Truchard

Dr James Truchard

In think you get the idea!

The technology
Co-Founder Dr James Truchard kicked of in his inimitable style. The enthusiasm he generates is perhaps comparable to that generated by the founder of Apple though his style is completely different and perhaps understated though very real. He spoke about platforms and the future of virtual instrumentation. “From cyber physical systems to big Analog data solutions, graphical system design provides a platform based approach for measurement and control!”

Jeff Kodosky

Jeff Kodosky

The Applications
The second day commenced with a presentation by the other side of the foundation duo, Jeff Kodosky – the Father of Labview. Fostering discovery – using Labview in the most difficult applications. These include the iconic CERN project in Europe, sensitive healing technologies for cancer treatment and facilitating food production in otherwise impossible areas.

Inspiring and Preparing the Next Generation of Innovators
“High school kids created these robots!”
Day three Ray Almgren discussed Inspiring and Preparing the Next Generation of Innovators, always a strong suite with National Instruments. However we have no intention in treating on these “keynote” sessions. No! National Instruments with their usual efficiency, have provide professional videos of NIWeek 2013 Keynote Presentations and they are well worth looking at. They have divided each days keynotes into four sections which means that one can navigate to the topics/technologies of interest.

There are a few presentations which impressed your correspondent.

The young are always impressed with robots. We were introduced to David Bocanegra, a youthful programmer (10 years old), using the LEGO® MINDSTORMS® EV3 system. He demonstrated his skill and the versitality of the EV3 software. When asked he enthusiastically responded “EV3 software is awsome…” (See pic at top of page!)

We saw some high-school students using the NI roboRIO on a frisbie fairing robot. They started the system and there was a pregnant pause interrupted by one of them saying “Uh-oh!” One of the Nat Instrument guys (Ray Algrem) came across to see what was wrong but obviously the students had it under control as they explained what the robot was doing while nothing could be seen.

“What’s the probability of success?” he asked dubiously.

“High!” was the confident (and indignant) response of the students! And they were right!

They then used the doubting presenter for target practice as they used him in a William Tell-like exercise of shooting a bottle of his head with a frisbee! Wonderful stuff!

Dr Red Whittiker & Lunar Lander

Dr Red Whittiker & Lunar Lander

Two other presentations on the third day were both to do with space. A memorable presentation from NASA’s Associate Administrator of Education, Leland Melvin. He shared his time on the International Space Station and his experience with robotics in space. Finally a presentation from Dr Red Whittaker, Carnegie Mellon University, on a planned robotic expedition to the moon to explore mineral resources there. The extraordinary machine that will be landing and doing the work was shown. Watch out for news of the pin-point landing and exploration in October 2015. Fascinating stuff.

Finally these tweets “I know I say it every year, but this was THE BEST #NIWEEK EVA!” (@crelfpro ) and “Had a great time @NIWeek! Already excited for next year.” (‏@TandelSystems).

Invitation!
“Thanks for attending #NIWeek 2013. We had a blast & hope you did too. Stay social & tell us what you liked best!” (@NIglobal)

Oh yes! Next year they do it (or something like it) all over again. Mark your diary – NI Week 2014 – 5th to 7th August 2014 in Austin Texas USA. 

NIWeek 2013

NI Week on twitter #NIweek!

7 Steps to to Making the Most of NI Week

Social Media Guide at NI Week (Slideshow – #NIWeek tweets are more powerful with photos.)

Live Keynotes (National Instruments’ videos in digestible chunks!)

Check out LabViewNI.com for LABVIEW NEWS INFORMATION

Blogs and Reports

(We’ll probably have missed a few so check out the tweets etc!)

NIwk13

Bloomy Controls Awarded Most Outstanding Technical Resources (PR Web, 22/8/2013)

cDAQ, cRIO, myRIO, PXImc und natürlich LabVIEW ((Hans Jaschinski, all-electronics.de 20/8/2013)

Cold Fusion Demo in Texas – More Pictures (DRbobblog, 16/8/2013)

NI Week 2013: The Enable highlight reel! (Ben Zimmer, Enable Education, 14/8/2013)

NIWeek 2014 dates announced (Radio Electronics 12/8/2013)

Instrument Maker Puts Education Center Stage (Douglas McCormack, IEEE Spectrum, 12/8/2013)

Reach of software-designed instrumentation for electronic test extended (Read-out Signpost, 12/8/2013)

National Instruments’ CEO Hosts Investor Conference (Transcript) (Seeking Alpha, 10/8/2013)

Record-breaking Attendance, Groundbreaking Products (NICommunity News, 9/8/2012)

National Instruments adds to their platforms (Larry Desjardin, EDN Network, 9/8/2013)

National Instruments promotes lifelong science, engineering education (Mary Gannon, Connector Tips, 9/8/2013)

Engineering Innovation at National Instruments’ NIWeek (Laura Lorek, Silicon Hills News, 9/8/2013)

Technologies & tutorials highlight week (Vision Systems Design, 9/8/2013)

Take care of the village people (New Electronics, 9/8/2013)

Students can design sophisticated systems in one semester (Read-out, 9/8/2013)

The Fourth Industrial Revolution Is Here (Rob Spiegel,Design News, 8/8/2013)

NIWeek’ displays latest in science, tech (Jess Mitchell , Austin YNN, 8/8/2013)

Electric Utility Distributes Control to Move Grid Into 21st Century (Aaron Hand, Automation World, 8/8/2013)

The Outsider’s Guide to NIWeek 2013 (Matt Migliore, Flow Control, 8/8/2013)

Places to be this week (Martin Rowe, EE Times, 8/8/2013)

Ditch the Lab: Take measurements in rugged environments (Read-out, 8/8/2013)

Programming Lego Mindstorms using RTI DDS Toolkit for LabVIEW (Merwin Shanmugasundaram, RTI, 8/8/2013)

Custom hardware is dead (New Electronics, 8/8/2013)

Fun at NIWeek (Mary Gannon, MotionControl Tips, 8/8/2013)

National Instruments redesigns NI CompactRIO from the inside out (Read-out, 8/8/2013)

NI Week hat im texanischen Austin begonnen (Hendrik Härter, Elektronik Prazis, 7/8/2013)

Platforms in a programmable world (New Electronics, 7/8/2013)

Day 2 of NI Week is “applications day!” (Paul Heney, Mobile Hydraulic Tips, 7/8/2013)

Engineers solve $10-billion spoiled milk issue (Davif Yeomans, KXAN, 7/8/2013)

NI Unveils New Products and Glimpses of Future for Automation, Test and Measurement (Gary Mintchell, Manufacturing Connection, 7/8/2013)

NI cDAQ-9188XT Introduced for Rugged Environments at #NIWeek (Radio Electronics, 7/8/2013)

Wineman Technology Simplifies Complex Control for Test Cell Applications with INERTIA™ 2012 (PR Newswire, 6/8/2013)

Cyberphysical Systems Will Boost Manufacturing Performance (Gary Mintchell, Manufacturing Connection, 6/8/2013)

NI Week’s cool apps on display (J LOve, EDN Network, 6/8/2013)

Jet vehicle at NI Week turns heads (David Yeomans, KXAN, 6/8/2013)

Custom Hardware Design Is Dead (Janine Love, EETimes, 6/8/2013)

NI Week 2013 and the big data revolution (Paul Heney, Mobile Hydraulic Tips, 6/8/2013)

Industrial Controllers Evolve with FPGAs (David Greenfield, Automation World, 6/8/2013)

LabVIEW 2013 helps users focus on innovation Instead of infrastructure (Read-out Signpost, 6/8/2013)

Start of the never ending tour (New Electronics, 6/8/2013)

Items of NI News on Modular Connections (Starts 5th August)

NI Week: Hotter than Austin in August (Microwave Journal 5/8/2013)

Wineman Technology Selected to Showcase INERTIA™ Software Platform at NIWeek 2013 (5/8/2013)

Pictures & Videos

 Scenes from NI Week 2013 (Machine Design, Photo Gallery, 12/8/2013)

• Design World: Day 1 : Day 2

• Niweek expo hall in 6 seconds (VI Shots)

• A less frenetic glimps of the NIWeek Editor experience! (1.07 min video!)

So much geek at #NIWeek!

Although Read-out was unable to sail over to Austin however we did make it to last years NI Day event in London (GB). Here is what we said about it! No boxes with magic pixies at Westminster!

NPL trials identify improved bioaerosol monitoring technology

01/07/2013
Trials conducted by the British National Physical Laboratory (NPL) have identified improved methodologies for sampling and measuring bioaerosols at composting facilities. Commissioned by Britain’s Department for Environment, Food and Rural Affairs (DEFRA), the first project began in 2008 and the results of a larger series of trials will be published later this summer.

Background
As Britain seeks to reduce the quantity of waste going to landfill, there has been a growth in demand for composting, particularly to accommodate ‘green bin’ waste. In addition there has been an increase in the variety of wastes that are being composted, so it is important to be able to understand the emissions from these processes in order to minimise any impact on the environment and human health.

Trials have identified improved methodologies for sampling and measuring bioaerosols at composting facilities. However, bioaerosols are sampled in a wide variety of industries where airborne biological particles (such as bacteria, pollen, endotoxins, viruses and fungal spores) represent a potential hazard.

Trials have identified improved methodologies for sampling and measuring bioaerosols at composting facilities. However, bioaerosols are sampled in a wide variety of industries where airborne biological particles (such as bacteria, pollen, endotoxins, viruses and fungal spores) represent a potential hazard.

Micro-organisms are necessary for the composting process, so they will always be present in large quantities within the bulk material. Any handling process, such as moving, sorting or turning, is likely to create airborne dust that will contain micro-organisms, and studies have shown that exposure to the pathogenic fungus Aspergillus fumigatus can trigger asthma, bronchitis and allergic responses, so workers and residents near composting sites are potentially at risk.

Traditional bioaerosol sampling techniques rely on the impaction of particles on a solid agar medium. However, these methods can be time-consuming and are limited by low flow rates and unreliable impaction. They are also restricted to particles that can be cultivated. In contrast, the wet walled cyclonic technology employed by the Coriolis instruments, rapidly collects biological particles in liquid at a high flow rate with validated efficiency, and the liquid containing the particles is compatible with a number of rapid microbiological analysis methods, including qPCR (quantitative polymerase chain reaction), which enables the quantification and qualification of most targets.

Studies at NPL
The objective of the initial work was to improve the accuracy and speed of traditional measurement techniques, and one of the conclusions of the project was that the wet walled cyclonic technology employed by the Coriolis, gave the best performance for quantifying biological species such as fungi and bacteria, when used in conjunction with qPCR. Some of the experimental work was carried out at the Health Protection Agency (HPA)   – now Public Health England – to quantify the efficiency of sampling and analysis methods for the measurement of airborne Aspergillus fumigatus spores. This work demonstrated good correlation between Coriolis/qPCR and the HPA’s ‘standard’ method for these measurements.

As a result of the initial work, NPL now offers an Aspergillus fumigatus bioaerosol monitoring service to quantify airborne spore levels at composting sites using a rapid qPCR technique. The key advantages of this monitoring service over traditional microbiological methods are:

  1. Short sampling times
  2. Rapid analysis
  3. High sensitivity and broad detection range
  4. Species specific
  5. Detects total spore count (viable and non-viable), which overcomes any issue of emission underestimation as a result of damage to the spores during collection
  6. Aids differentiation between background spore levels and site specific emission

A full report in the early work has now been published on the Defra website, and further studies have been commissioned. The most recent studies have involved bioaerosol sampling with the Coriolis sampler at four different sites, every quarter during 2012. NPL’s David Butterfield says “The objective of the latest trial was to assess the sampling and monitoring technologies in greater detail, under differing weather conditions and with different sources.”

At the same time, a working group at CEN, the European Committee for Standardisation, is working on a new bioaerosol monitoring standard that is likely to accommodate the latest technology and will necessitate demonstration of equivalence.

Looking forward, Jim Mills from Air Monitors, the company which launched the Coriolis in the Britain, says “It will take some time before this new technology becomes standard practice, but in the meantime, with the benefit of the work that has been conducted by NPL and others, there is no reason why Coriolis should not be utilised widely to improve the efficiency and effectiveness of bioaerosol sampling at composting sites, and in many other applications such as hospitals, legionella investigations, cooling towers, animal housing and pharmaceutical manufacture.”


Remote monitors track river restoration success

10/05/2013
Remote monitoring of restoration work on beautiful English river using advanced sensing and telemetry technology.

Possibly one of the most unique areas of England is East Anglia; that part of the country north of London and south of the inlet known as the Wash. It encompasses the counties of Norfolk, Suffolk, Cambridgeshire and Essex, and is generally flat, stretching to the famous Broads, beloved of inland sailors and wildlife lovers. Water is an ever-present feature and this needs to be protected for environmental and biodiversity reasons.

The Norfolk Rivers Trust has installed a remote river monitoring station that has been tracking water quality and flow before and after river restoration work at an area of ecological importance on the River Nar (WIKI link!).

Picturesque view of the River Nar below Castle Acre! (Pic: Norfolk Rivers Trust)

Picturesque view of the River Nar below Castle Acre! (Pic: Norfolk Rivers Trust)

Rising in chalk hills to the east of the village of Tittleshall, the river flows south for 2.5 km until it reaches Mileham, then predominately west for 39.5 km through the villages of Litcham, Castle Acre, West Acre and Narborough until it reaches the tidal Ouse at King’s Lynn. The river rises on chalk and in its course to Narborough flows over chalk formations. In its lower course the underlying geology is more complex and consists of a progression from Narborough downstream through a series of clays and greensands, making it one of only a few remaining fenland chalk streams. In line with the requirements of the Water Framework Directive, the project is designed to ensure that the Nar maintains good ecological status by 2015 and in doing so it aims to improve the habitat for wildlife and promote biodiversity. The river monitoring station incorporates an Adcon GPRS telemetry unit from OTT Hydrometry, which automatically collects data and feeds a website, providing easy access for the project team.

The Problem
Agricultural runoff is a particular problem in the Anglian region because of the light sandy soils which are easily eroded during times of heavy rainfall. Fertilisers can add to the problem because they can be washed from the field and end up in water courses. As a result, many Norfolk Rivers contain high levels of nitrate and phosphate. Excessive levels of these nutrients can lead to eutrophication, symptoms of this can include vigorous growth of blanket weed; this change in water quality lowers dissolved oxygen levels in the streams and rivers, and harms wildlife.

In the past, the Nar channel has been made straighter, wider and deeper; initially to improve navigation, and later to improve drainage. However, this has had a detrimental effect on wildlife.

The River Nar also suffers from sediment deposition arising from point sources such as land drains, and from diffuse sources such as run-off resulting from cultivation in wet periods. This has affected species that rely on gravel beds for any stage in their lifecycle. For example, brown trout need sediment free gravel to lay their eggs.

The River Nar Project
Assisted by funds from WWF-UK, the Coca-Cola Partnership and the Catchment Restoration Fund, the Norfolk Rivers Trust has established a £609k  (€720k) river and flood plain restoration project to reduce pollution in the River Nar and improve the habitat for wildlife.

The project began in June 2012 and includes work to change the course of the river from a straight incised channel to a meandering route; reconnecting the river to the floodplain, which would create new habitats. This channel restoration project was completed in October 2012. The project also includes the creation of reed beds and other in-ditch options to trap sediment before it enters the River Nar. Currently four reed beds have been installed in different areas in the River Nar catchment which also includes the dredging of an existing pond.

Monitoring
Prior to the commencement of the project, the Norfolk Rivers Trust measured water quality by collecting weekly samples and transferring them to their laboratory for analysis. This was a time-consuming and expensive activity and only produced spot data for the moment that a sample was taken. Consequently, events that took place at night or between the sampling interval were not detected, so there were clear advantages to be obtained from continuous monitoring.

In order to establish a continuous monitoring station for water quality and flow, OTT Hydrometry provided a Hydrolab Minisonde water quality monitor and an Adcon A755 Remote Telemetry Unit (RTU). In combination with a bed mounted Doppler flow meter (provided by the Environment Agency), the station is able to provide a continuous record of the river’s condition.

narOTTThe Hydrolab Minisonde 5 takes measurements for turbidity, flow, conductivity, temperature and luminescent dissolved oxygen (LDO) every 15 minutes. The collected flow and water chemistry data is then stored and transmitted every hour via the RTU to an online server hosted by OTT Hydrometry. This allows information to be downloaded and analysed in the Trust’s office without the need for regular site visits. Data can be accessed at anytime from anywhere using the Adcon app.

Operating on extremely low power, and designed specifically for the collection and transmission of remote monitoring data, ADCON RTUs are able to utilise a variety of communication methods depending on site conditions. For example, radio represents a low-cost alternative in areas with poor GSM coverage and where line of sight is possible, with repeaters if necessary.

The monitoring site on the Nar has some GSM coverage, but the signal is poor, so an ADCON A755 RTU was chosen to communicate via GPRS. The A755 RTU has been developed specifically for areas with low signal, because it stores all monitoring data when signal strength is too low for transmission, and then sends the information when signal coverage improves, sending the backed up data first.

The monitoring equipment was installed at the end of July 2012 and restoration work began on 8th October 2012. Emphasising the importance of monitoring before and after the restoration work, project officer Helen Mandley says: “To be able to judge the success of the project it is essential that we are able to compare water quality data from the old river channel to the new river channel, because we need to improve water quality in order to improve the biodiversity of the river.”

Results
In addition to water quality and flow monitoring, ecological assessments have been undertaken for water voles and other small mammals, macrophytes, aquatic invertebrates, vegetation and fish. However, before a reliable assessment of the project’s success can be undertaken, it will be necessary to evaluate data over an extended period so that seasonal effects can be taken into consideration.

Pre- and post-restoration data on ecology, water quality and flow will be assessed in September 2013, and it is hoped that this will provide clear evidence that the project has had a significant effect on water quality and biodiversity.

Helen hopes to continue the project beyond 2013 commenting, “We currently monitor downstream of one of the new reed beds, but in the future we would like to place more monitoring equipment upstream of the reed bed to really see the differences, particularly in levels of turbidity and conductivity.”

The current phase of the project is due to run until the end of 2013, but a series of ‘restoration units’ have been identified by The River Nar Steering group that includes the Norfolk Rivers Trust, each applying restorative work to a specific section of the river. These units extend to 2027 but will be reliant on the availability of future funding.

Clearly, environmental monitoring is essential for the evaluation and ongoing management of remediation projects, and OTT’s UK Managing Director Simon Wills says: “This project is a good example of how simple and low-cost it can now be to create a monitoring station that is sufficiently flexible to collect and transmit data from a variety of monitors. “Advances in sensor, datalogging, communications and power management technology have combined to dramatically improve the effectiveness of remote data collection, which means that less site visits are necessary; thereby saving a great deal of time and money that can be spent on restoration.