Responsive approach to water utility on-site support during the COVID-19 pandemic.

04/11/2020

Mission critical systems, such as water purification systems, require secure and reliable data networks to ensure they perform efficiently, effectively and without interruption. At some of Anglian Water’s sites (GB), there was automation equipment that was installed over 30 years ago. This was problematic, as it did not provide suitable infrastructure for the transition to modern IP based communication networks. For example, replacing the existing programmable logic controllers (PLC), which was required, made them incompatible with the existing data networks and created the need for the entire automation system to be upgraded at the same time. A key benefit of upgrading the system would be an increase in network redundancy and consequently the reliability of their service for customers. It would also provide Anglian Water with holistic monitoring of the system and access to real time data.

In the autumn of 2019, Anglian Water wanted to upgrade the data networks for one of their sites and enlisted the help of Westermo. The network connected ten remote pumps back to a main water plant near Kings Lynn using a series of RS485 cables. One option was to simply replace the existing ageing data communications equipment with similar devices, but that would not satisfy the requirement for network redundancy and modernisation. In addition, the company wanted to use the existing cables to minimise the cost of the project and to implement a 4G network to provide communication redundancy.

Collaboration on this project started when engineers from Anglian Water attended a Westermo Certified Engineer training course to help them gain the knowledge needed to upgrade their existing data communications network. This led to the development of a network diagram to determine the full scope and significance of this specific project, and it was decided that they would get support from Westermo to design and configure the network.

Network design and installation phases
Working with Anglian Water engineers, Westermo designed a data network that utilised the existing multiplexer network and RS-485 cables to provide a backbone for Ethernet communication, and added a new 4G cellular network to provide redundancy. With this design, the network could continue to function using the 4G communications and a primary link could be added as they went, allowing commissioning, testing and firewalls to be implemented on a `per site’ basis. Once the single-pair high-speed digital subscriber line (SHDSL) was operating, the Westermo Wolverine line extenders would automatically reconfigure the network to operate via the SHDSL.

The importance of this project was evident throughout the design phase due to it supporting a live, mission critical system. The solution needed to be implemented within a tight schedule and start immediately without any issues. Collaboration was key to properly understand the network requirements. Most importantly, the remote pumping stations needed to remain fully operational during commissioning.

The network is constructed predominantly of Westermo WeOS devices, which are using the non-propriety open shortest path first (OSPF) routing protocol and support virtual private networks (VPN). OSPF provides a mechanism to select different paths for network traffic and the VPN provides an added layer of security for the network. This complex setup required a clear understanding of the network structure to determine how the data will be routed should there be a failure at any point on the SHDSL.

To help the customer commission the network, Westermo provided supporting documentation, which was produced using Westermo’s WeConfig software configuration tool. The report function of the software pulled together the whole network to present a clear overview, providing confidence during testing and commissioning stages. WeConfig also allowed a full backup of the whole site in one sweep, and a detailed overview of physical connections.

Each site required Anglian Water to install new external antennas to provide them with suitable 4G coverage. Once the 4G network was available and operating, this allowed the twisted pair cables to be updated one at a time. Once the SHDSL links were commissioned, the network could reroute traffic, via the SHDSL backbone to Anglian Water’s central site.

Unexpected circumstances during commissioning
The 4G network was included in the plan simply to provide redundancy, but it offered an unexpected benefit. During commissioning of the network, the global COVID-19 pandemic hit the world. This made it very difficult for support personnel to go on-site safely and accelerated the need for remote management to monitor the sites.

Fortunately, the new network was designed and configured to enable remote access, using the 4G communications. Originally this was to support network management tasks, but this also provided a method for engineers to remotely connect to the network from within the Anglian Water system to assist with any technical issues during and after the network was configured. Westermo technical engineers were able to provide support to the customer, via this method, ensuring the network was up and running and all members of staff involved were safe.

Foto Jonas Bilberg

Monitoring the System
In addition to designing the network and configuring the network devices, Westermo also configured the ability to monitor the 4G communications and SHDSL port status using Simple Network Management Protocol (SNMP). By monitoring the network, Anglian Water could determine if the connection was using the primary Ethernet backbone or 4G cellular network. This helps them understand if a fault has occurred on one of the SHDSL lines.

Additional support
Once the network was in place and operating, firewalls were added. Due to the pandemic, it was not possible to have support on-site when adding the firewalls, which meant remote support was the only option. Every firewall modification had to be carefully planned to ensure that support engineers were not locked out during testing. Configuration of the firewalls was performed using commands via the 4G communications. Configurations of the firewalls was completed at the central site first to ensure that communication to all of the remote sites was working correctly, before rolling out a full secure network. The remote sites were then added one at a time to reduce risk. Implementing the firewalls was challenging both for Anglian Water and Westermo, with every command needing to be accurate. Ultimately, configuration of the firewalls was successful and going forward has provided the customer confidence that the network is secure.

“We felt fully supported by Westermo throughout design and installation. We are delighted we now have an upgraded, supportable system in place and that this was achieved during extremely challenging times. Collaboration between all parties has made this a success”, explained Charlie Pritchard, Infrastructure Project Manager at Anglian Water.

Products used in application
In total, twelve Wolverine DDW-142 and DDW-225 line extenders were installed to enable the existing cables to be reused to create effective Ethernet networks over long distances to the remote sites. The Wolverines use SHDSL technology, which makes it possible to reuse many types of pre-existing copper cables which can lead to considerable financial savings. All Wolverine devices are powered by Westermo’s WeOS operating system, which enables complex networking functions to be configured easily.

MRD-455

Ten of Westermo’s MRD-455 routers were installed, one at each site, to create the 4G network. As well as forming the 4G network, the cellular routers provide a gateway to the IP network, and a unique method for port forwarding to allow remote support and monitoring. A Westermo RedFox RFI-211-T3G industrial routing switch was installed at the central site, providing the necessary layer 3 functionality required for this type of application. All the Westermo devices were delivered pre-configured to save time and reduce project risk.

Result
Once installed, the network immediately operated correctly, which can be attributed to the careful planning and collaboration between Anglian Water and Westermo. Despite the challenges caused by the COVID-19 pandemic, Westermo was able to develop a stable, secure and ultra-robust network with remote access support as an alternative to on-site support. This has ensured the network has operated smoothly without any interruptions. As a result of this successful network upgrade, the local area can continue to enjoy clean and uninterrupted water supply every day.

@westermo  @AnglianWater @HHC_Lewis#Pauto #PLC #water

Why PLCs fail!

24/10/2016

Boulting Technology has released an infographic to help engineers mitigate problems with programmable logic controller (PLC) based control systems. The handy guide highlights the top five causes of failure and can be downloaded, free of charge, from their news page.boulting_plc_failure_paperPLC-based control systems are invaluable to a manufacturing or processing business because they control and regulate critical production systems and processes. A failed control system can cause significant plant downtime and is likely to be extremely costly; it can also create a hazardous situation when the system is controlling a critical process. By following correct maintenance procedures, businesses can minimise the chances of system failure, which in turn increases productivity, minimises costs and helps to maintain a valuable business reputation.

Faults with PLC input/output (I/O) modules and field devices account for 80 per cent of system failures. Usually, fixing these types of issues is relatively straightforward; however diagnosing them requires a basic knowledge of the system and on occasion specialist test equipment such as a multimeter. In addition, more often than not some form of PLC software diagnosis can aid with identifying the root cause of the fault. Although diagnosing the fault can often be time-consuming and requires specialist knowledge and experience, rectifying it can be as simple as replacing an I/O module or reconfiguring a field device.

Other common causes of failure include environmental issues, the integrity of the system earth, power supplies, failure of battery back-up during a power outage, electromagnetic or radio frequency interference and network and communication problems.

“Understanding the main causes of PLC control system failure means engineers can do more to prevent them,” explained James Davey, service manager of Boulting Technology. “In most cases, the minute a control system fails a business starts to lose money through downtime and missed deadlines. At worst it can result in a hazardous situation that needs immediate attention. Simple steps, such as regular control system health-checks, backing up PLC software and planning for contingency in the event of a power outage helps keep production processes up and running.

“At Boulting Technology, we pride ourselves on our ability and experience to use planned maintenance to prevent problems before they occur. Similarly, our guide to PLC control system failure will help plant engineers look out for warning signs of a failing system and take action before the issue becomes severe.”

@BoultingTech #PAuto #PLC

Increased Activity in Multiple End-use Industries Rejuvenates Global PLC Market!

24/01/2015
Competition spurs innovation in technology and pricing

The global programmable logic controllers (PLC) market witnessed a strong decline in growth in 2012 due to the uncertain economic scenario in the developed world, most notably in the mature markets of North America and Europe. Since 2013, however, the market has witnessed positive growth across all regions. In particular, emerging regions such as Asia-Pacific are displaying uptrends due to increased activity in the construction, water and wastewater, and power industries.

typplcNew analysis from Frost & Sullivan, Global Programmable Logic Controllers Market, finds that the market earned revenues of €8.92 billion ($10.37 billion) in 2013 and estimates this to reach €12.55 billion ($14.58 billion) in 2018. The study covers services, software, modular input/output modules, programmable automation controller as well as large, medium, small and nano PLC. In the coming years, the small and medium PLC segments will be instrumental for market development.

In Europe, the need to enhance efficiency, comply with regulations as well as improve safety and control capabilities are driving the uptake of PLC. Market progress in the rest of the world is primarily fuelled by the desire to optimise assets, engage in reliable process planning, and achieve operational agility.

“With increasing customer demand and intense competition among tier-one companies, the global PLC market is poised to witness a surge in technology and pricing innovation,” said Frost & Sullivan Industrial Automation & Process Control Industry Analyst Karthik Sundaram. “Market participants have been developing products with new design and control functions that surpass traditional definitions.”

For the innovative wave to have a definite impact, boosting the security features in PLC hardware, software, and the network infrastructure should be a key focus area. As cyber security influences end-user perception of PLC, addressing threats will be equally important for continued market expansion.

“PLC manufacturers must offer robust support services, roll out cost-effective products, and communicate winning value propositions to customers,” advised Sundaram. “They should also strive to expand their geographical presence and refine their domain expertise to taste success.”