It all began with the War of the Currents…

24/01/2020

Today, people greatly appreciate having electrical energy available at the flip of a switch, seemingly at any time and for any occasion. But where does electricity actually come from? The answer most people would give you is: “from the wall socket, of course”. So does this automatically settle the question of security of supply? More on this later.

If we compare the history of electric current with the 75 years of the history of Camille Bauer Metrawatt AG, it is easy to see how they were interlinked at certain times in the course of their development. Why is that?

It all began with the War of the Currents – an economic dispute about a technical standard

It was around 1890 when the so-called War of the Currents started in the USA. At that time, the question was whether the direct current favoured by Thomas Alva Edison (1847-1931) or the alternating current promoted by Nicola Tesla (1856-1943) and financially supported by George Westinghouse (1846-1914), was the more suitable technology for supplying the United States of America with electrical energy over large areas and constructing power grids. Because of Westinghouse’s market dominance at that time compared to Edison General Electric (called General Electric from 1890 on), it soon became clear that the alternating voltage invented by Nicola Tesla was rapidly gaining the upper hand. This was not least because its approximately 25% lower transmission losses weighed unquestionably in its favour. Soon afterward, came the breakthrough for alternating voltage as the means of transmitting electrical energy using. Initially, the main target application was electric lighting, which to be spurred on by the invention of the incandescent lamp by Edison. The reasons for this were logical. Westinghouse was initially a lighting manufacturing company and wanted to secure as great a market share as possible.

As developments continued, it is no surprise that already by 1891, in Germany for example, the first long-distance transmission of electrical energy was put into operation, over a distance of more than 170 km from Lauffen am Neckar to Frankfurt am Main. It was a technological breakthrough using three-phase current technology. However, this has by no means been the end of the story for direct current. Not least because of digitalization, electromobility, decentralized energy supplies, etc., DC voltage has experienced a full-blown renaissance and now is treated almost as a brand-new topic.

The Camille Bauer story.
The foundation of the Camille Bauer company dates back to 1900, immediately after the War of the Currents just described, at a time when electricity was rapidly gaining in importance. At the turn of the century, the Camille Bauer company, named after its founder Camille Bauer-Judlin, began importing measuring instruments for the trendy new phenomenon called “electricity” into Switzerland for sale to the local market. Some years later, in 1906, Dr. Siegfried Guggenheimer (1875 – 1938), formerly a research scientist for Wilhelm Conrad Röntgen (1845 – 1923) and who in 1901, became the first winner of the Nobel Prize for physics, founded what was a start-up company in Nuremberg, Germany, trading under his own name. The company was engaged in the production and sale of electrical measuring instruments. However, due to pressure from the Nazis because Dr. Guggenheimer was of Jewish descent, he had to rename the company in 1933, creating Metrawatt AG.

Four technological segments.

Four technological segments.

In 1919, a man by the name of Paul Gossen entered the picture. He was so dissatisfied with his employment with Dr. Guggenheimer that he founded his own company in Erlangen, near Nuremberg, and for decades the two rivals were continuously in fierce competition with one another. In 1944, towards the end of the Second World War, Camille Bauer could see that its importing business had virtually come to a standstill. All the factories of its suppliers, which were mainly in Germany (for example Hartmann & Braun, Voigt & Haeffner, Lahmeyer, etc.), had been converted to supplying materials for the war. At this point, a decision had to be made quickly. Camille Bauer’s original trading company located in Basel (CH), undertook a courageous transformation. In order to survive, it turned itself into a manufacturing company. In a first step, the recently formed manufacturing company Matter, Patocchi & Co. AG in Wohlen (CH) was taken over, in order to be get the business up and running quickly with the necessary operating resources at their disposal. Thus the Swiss manufacturing base in Wohlen in the canton of Aargau was born.

The story does not end there. In 1979, Camille Bauer was taken over by Röchling a family-owned company in Mannheim, Germany. At that time, Röchling wanted to quit the iron and steel business and enter the field of I&C technology. Later, in 1993, Gossen in Erlangen and Metrawatt in Nuremberg were reunited in a single company, after Röchling became owner of the Gossen holding company as a result of the acquisition of the Bergmann Group from Siemens in 1989, and Metrawatt was acquired from ABB in 1992. At the same time, Camille Bauer’s German sales operation in Frankfurt-Dreieich also became a part of the company. Today the companies operate globally and successfully under the umbrella brand of GMC-I (Gossen Metrawatt Camille-Bauer-Instruments).

A new era.
The physics of electric current have not changed over the course of time. However, business conditions have changed drastically, especially over the last 5-10 years. Catch phrases such as electricity free market, collective self-consumption, renewable energy sources, PV, wind power, climate targets, reduction of CO2 emissions, e-mobility, battery storage, Tesla, smart meters, digitalization, cyber security, network quality, etc. are all areas of interest for both people and companies. And last but not least, with today’s protest demonstrations, climate change has become a political issue. We will have to see what results from this. At the very least, the catch phrases mentioned above are perfect for developing scenarios for electricity supply security. And it really is the case that the traditional electricity infrastructure, which is often as old as Camille Bauer Metrawatt itself, was not designed for the new types of energy behaviour, either those on the consumer side or the decentralised feed-in side. As a result, it is ever more important to have increasing numbers of intelligent systems which need to work from basic data obtained from precise measurements in order to avoid outages, blackouts and resulting damage.

The overall diversity of these new clusters of topics has prompted Camille Bauer Metrawatt AG to once more face the challenges with courage and above all to do so in an innovative and productive way. In this spirit, Camille Bauer Metrawatt AG develops, produces and distributes its product range globally in 4 technological segments.

These are:
(1) Measurement & Display,
(2) Power Quality,
(3) Control & Monitoring,
(4) Software, Systems and Solutions.

Through its expert staff, modern tools and external partners Camille Bauer Metrawatt is able, for example, to analyse power quality and detect power quality problems. In addition, the Camille Bauer Metrawatt Academy, recently founded in 2019, puts its focus on knowledge transfer by experienced lecturers, with the latest and most important topics as its main priority. Furthermore, we keep in very close contact with customers, authorities, associations, specialist committees, educational institutions, practice-oriented experts and the scientific community in order to continually provide the requisite solutions to the market and interested parties.

#Camille_Bauer_Metrawatt #PAuto @irishpwrprocess


The most viewed Stories in 2019.

02/01/2020
  • MCAA President Teresa Sebring has certified the election of officers and directors of the Measurement, Control & Automation Association…
  • The VP869 high performance 6U OpenVPX FPGA processing board has been announced by Abaco Systems .  Featuring two Xilinx® UltraScale+™ FPGAs …
  • Mr. Uwe Gräff has been appointed to the Board of New Technologies & Quality at the Harting Technology Group. He follows Dr. Frank Brode…
  • ISA demonstrates its undoubted strength again in providing stunning seminars allied with top class training built on member experience. Ne…
  • GE-IP Third Annual Executive Forum on delivering operational excellence. GE Intelligent Platforms recently hosted its third annual execut…
  • Leading monitoring and analysis solution makes improving SQL Server performance easier than ever SolutionsPT has announced a new partners…
  • The International Society of Automation (ISA) has welcomed Paul Gruhn , PE, CFSE, and ISA Life Fellow, is its 2019 Society President. Pa…
  • exida, LLC announced that it has assessed the Honeywell ISA100 Wireless™ Device Manager model WDMY version R320 and certified that it meets…
  • Anglia has continued to make big strides towards full RoHS 3* compliance over six months before the deadline for meeting the new provisions…
  • The emergence of radar has been an important advance in the level measurement field. Radar represents a cost effective, accurate solution that is immune to density and other process fluid changes….

#PAuto #TandM


Most viewed stories in 2018

What is on the list of trends for 2020?

06/12/2019
Data centre trends for 2020 from Rittal

Growing volumes of data, a secure European cloud (data control), rapid upgrades of data centres and rising energy consumption are the IT/data centre trends for Rittal in 2020. For example, the use of OCP (Open Compute Project) technology and heat recovery offers solutions for the challenges of the present.

Concept of cloud computing or big data, shape of cloud in futuristic style with digital technology interface!

According to the market researchers at IDC (International Data Corporation), humans and machines could already be generating 175 zettabytes of data by 2025. If this amount of data were stored on conventional DVDs, it would mean 23 stacks of data discs, each of them reaching up to the moon. The mean 27 percent annual rate of data growth is also placing increasing pressure on the IT infrastructure.

Since there is hardly any company that can afford to increase its own data storage by almost a third every year, IT managers are increasingly relying on IT services from the cloud. The trend towards the cloud has long since been a feature in Germany: A survey published in the summer of 2019 by the Bitkom ICT industry association together with KPMG showed that three out of four companies are already using cloud solutions.

However, businesses using cloud solutions from third-party providers do lose some control over their corporate data. That is why, for example, the US Cloud Act (Clarifying Lawful Overseas Use of Data) allows US authorities to access data stored in the cloud, even if local laws at the location where the data is stored do prohibit this.

“Future success in business will be sustainable if they keep pace with full digital transformation and integration. Companies will use their data more and more to provide added value – increasingly in real time – for example in the production environment,” says Dr Karl-Ulrich Köhler, CEO of Rittal International. “Retaining control over data is becoming a critical success factor for international competitiveness,” he adds.

Trend #1: Data control
The self-determined handling of data is thus becoming a key competitive factor for companies. This applies to every industry in which data security is a top priority and where the analysis of this data is decisive for business success. Examples are the healthcare, mobility, banking or manufacturing industries. Companies are now faced with the questions of how to process their data securely and efficiently, and whether to modernise their own data centre, invest in edge infrastructures or use the cloud.

The major European “Gaia-X” digital project, an initiative of the German Federal Ministry for Economics and Energy (BMWi), is set to start in 2020. The aim is to develop a European cloud for the secure digitalization and networking of industry that will also form the basis for using new artificial intelligence (AI) applications. The Fraunhofer Gesellschaft has drawn up the “International Data Spaces” initiative in this context. This virtual data room allows companies to exchange data securely. The compatibility of their own solutions with established (cloud) platforms (interoperability) is also provided.

This means that geographically widespread, smaller data centres with open cloud stacks might be able to create a new class of industrial applications that perform initial data analysis at the point where the data is created and use the cloud for downstream analysis. One solution in this context is ONCITE. This turnkey (plug-and-produce) edge cloud data centre stores and processes data directly where it arises, enabling companies to retain control over their data when networking along the entire supply chain.

Trend #2: Standardisation in data centres with OCP
The rapid upgrade of existing data centres is becoming increasingly important for companies, as the volume of data needing to be processed continues to grow. Essential requirements for this growth are standardised technology, cost-efficient operation and a high level of infrastructure scalability. The OCP technology (Open Compute Project) with its central direct current distribution in the IT rack is becoming an interesting alternative for more and more CIOs. This is because DC components open up new potentials for cost optimisation. For instance, all the IT components can be powered centrally with n+1 power supplies per rack. This way, an efficient cooling is achieved, since fewer power packs are present. At the same time, the high degree of standardisation of OCP components simplifies both maintenance and spare parts management. The mean efficiency gain is around five percent of the total current.

Rittal expects that OCP will establish itself further in the data centre as an integrated system platform in 2020. New OCP products for rack cooling, power supply or monitoring will enable rapid expansion with DC components. Furthermore, new products will support the conventional concept of a central emergency power supply, where the power supply is safeguarded by a central UPS. As a result, it will no longer be necessary to protect every single OCP rack with a UPS based on lithium-ion batteries. The advantage: the fire load in the OCP data centre is reduced considerably.

Trend #3: Heat recovery and direct CPU cooling
Data centres release huge amounts of energy into the environment in the form of waste heat. As the power density in the data centre grows, so too do the amounts of heat, which can then potentially be used for other purposes. So far, however, the use of waste heat has proven too expensive, because consumers are rarely found in the direct vicinity of the site for example. In addition, waste heat, as generated by air-based IT cooling systems, is clearly too low at a temperature of 40 degrees Celsius to be used economically.

In the area of high-performance computing (HPC) in particular, IT racks generate high thermal loads, often in excess of 50 kW. For HPC, direct processor cooling with water is significantly more efficient than air cooling, so that return temperatures of 60 to 65 degrees become available. At these temperatures, for instance, it is possible to heat domestic hot water or use heat pumps or to feed heat into a district heating network. However, CIOs should be aware that only about 80 percent of the waste heat can be drawn from an IT rack, even with a direct CPU water cooling. IT cooling is still needed by the rack for the remaining 20 percent.

At the German Government’s 2019 Digital Summit, the topic of heat recovery was discussed in the working group concerned, which identified a high need for action. For this reason, Rittal assumes that by 2020, significantly more CIOs will be involved in the issue of how the previously unused waste heat from the data centre can be used economically.

Trend #4: Integration of multi-cloud environments
Businesses need to be assured that they can run their cloud applications on commonly used platforms and in any country. This calls for a multi-cloud strategy. From management’s point of view, this is a strategic decision based on the knowledge that its own organisation will develop into a fully digitised business.

For example, an excellent user experience is guaranteed by minimising delays with the appropriate availability zones on site. This means that companies choose one or more availability zones worldwide for their services, depending on their business requirements. Strict data protection requirements are met by a specialised local provider in the target market concerned, for example. A vendor-open multi-cloud strategy allows exactly that: combining the functional density and scalability of hyperscalers with the data security of local and specialised providers such as Innovo Cloud. At the push of a button, on a dashboard, with a contact person, an invoice and in the second when the business decision is made – this is what is making multi-cloud strategies one of the megatrends of the coming years. This is because the economy will take further steps towards digital transformation and further accelerate its own continuous integration (CI) and continuous delivery (CD) pipelines with cloud-native technologies – applications designed and developed for the cloud computing architecture. Automating the integration and delivery processes will then enable the rapid, reliable and repeatable deployment of software.

#PAuto @Rittal @EURACTIV @PresseBox

 


Secure remote access in manufacturing.

24/07/2018
Jonathan Wilkins, marketing director of obsolete industrial parts supplier EU Automation, discusses secure remote access and the challenges it presents.

Whether you’re working from home, picking up e-mails on the go or away on business, it’s usually possible to remotely access you company’s network. Though easy to implement in many enterprises, complexity and security present hefty barriers to many industrial businesses

Industry 4.0 provides an opportunity for manufacturers to obtain detailed insights on production. Based on data from connected devices, plant managers can spot inefficiencies, reduce costs and minimise downtime. To do this effectively, it is useful to be able to access data and information remotely. However, this can present challenges in keeping operations secure.

Secure remote access is defined as the ability of an organisation’s users to access its non-public computing resources from locations other than the organisation’s facilities. It offers many benefits such as enabling the monitoring of multiple plants without travel or even staffing being necessary. As well as monitoring, maintenance or troubleshooting is possible from afar. According to data collected from experienced support engineers, an estimated 60 to 70 per cent of machine problems require a simple fix, such a software upgrade or minor parameter changes – which can be done remotely.

Remote access reduces the cost and time needed for maintenance and troubleshooting and can reduce downtime. For example, by using predictive analytics, component failures can be predicted in advance and a replacement part ordered from a reliable supplier, such as EU Automation. This streamlines the process for the maintenance technician, flagging an error instantly, even if they are not on site.

The challenges of remote access
There are still significant challenges to remote access of industrial control systems, including security, connectivity and complexity. Traditional remote-access includes virtual private networking (VPN) and remote desktop connection (RDC). These technologies are complex, expensive and lack the flexibility and intelligence manufacturers require.

Additional complexity added by traditional technologies can increase security vulnerabilities. Industrial control systems were not typically designed to be connected, and using a VPN connects the system to the IT network, increasing the attack surface. It also means if a hacker can access one point of the system, it can access it all. This was the case in attacks on the Ukrainian power grid and the US chain, Target.

To overcome these issues, manufacturers require a secure, flexible and scalable approach to managing machines remotely. One option that can achieve this is cloud-based access, which uses a remote gateway, a cloud server and a client software to flexibly access equipment from a remote location. In this way, legacy equipment can be connected to the cloud, so that it can be managed and analysed in real-time.

Most manufacturers find that the benefits of remote access can offer outweigh the investment and operational risks. To counteract them, businesses should put together a security approach to mitigate the additional risks remote access introduces. This often involves incorporating layers of security so that if one section is breached, the entire control system is not vulnerable.

When implementing remote access into an industrial control system, manufacturers must weigh up all available options. It’s crucial to ensure your system is as secure as possible to keep systems safe when accessed remotely, whether the user is working from home, on the go, or away on business.

@euautomation #PAuto #Industrie4

Ensuring accurate pigment dispensing.

20/06/2018

PD Edenhall Ltd is one of the largest independent concrete facing brick manufacturers in Britain. They needed to accurately monitor the quantity of pigment being dispensed into the weigh hopper throughout the manufacture of concrete facing bricks.

Precise pigment dispensing needs to be calculated as inaccurate amounts of pigment can lead to incorrect colour blends, resulting in a loss of sales and profit.

Solution – Accurate DBBSM S-Beam Load Cells and Intuitive4-L Digital Indicator
To monitor the quantity of pigment going into the blend, 3x DBBSM S-beam load cells were connected together to the supports of the pigment weigh hopper.  The DBBSM S-beam load cells checked the load of the pigment weigh hopper throughout the pigment dispensing process and the outputs of the load cells were sent to an Intuitive4 load cell digital indicator.  This enabled the engineers to constantly check the correct amount of pigment was being dispensed into the mix.

“We chose Applied Measurements’ DBBSM s-beam load cells as the pigment is £1000 per tonne so has to be extremely accurate.” Paul Akers, Works Manager at PD Edenhall Ltd told us.

DBBSM S-Beam Load Cells

  • Capacities: 0-1kg up to 0-30,000kg
  • Force & Load Measuring
  • Tension & Compression
  • Output: 2mV/V to 2.7mV/V
  • High Accuracy: <±0.03% Rated Capacity
  • Custom Versions Available
  • Fast and Simple to Install

The DBBSM S-beam load cells were ideal to use in this application as they are extremely accurate of better than ±0.03% of the rated capacity.  Coupled with their dual bending beam design, they guarantee excellent accuracy.  Improved accuracy can be further guaranteed by using our specially designed rod end bearings to help reduce any extraneous forces.

They offer an optional sealing to provide protection in the dusty environment and a robust 4-core polyurethane cable, making them ideal to use in the pigment dispensing machine.

Intuitive4-L Load Cell Digital Indicator

  • 6-Digit LED Display (±199999)
  • Modular Construction
  • Fast & Simple to Setup
  • Ideal for Harsh Environments – Dust Tight IP65 Protection (Once Installed)
  • Superior Accuracy – 10 Point Linearisation
  • Higher Stability – Signal Filtering Adjustment
  • Improved Resolution – 20-bit A/D Converter
  • Compatible with the INT2 Series
  • 10Vdc Load Cell Excitation @ 120mA max.
  • Powers up to 4x 350Ω Load Cells
  • Available in Less Than 1 Week

The Intuitive4-L load cell digital indicator was chosen for this application as superior accuracy was needed due to the high cost of the yellow pigment.  The intuitive4-L boasts a 10 point linearisation guaranteeing outstanding accuracy coupled with a 20-bit A/D converter for high resolution.  High stability is promised with signal filtering adjustment options which reduce the effect of noise or instability of the input signal.  Plus, it benefits from an active filter which reduces the effects of vibration and other external sources of system noise.

The intuitive4-L load cell digital indicator is fast and simple to setup with its single layer menu making the options easier to find.  Dimensions and fittings are entirely compatible with the existing Intuitive2 models making the switch over to this new improved version even easier.

Once installed the intuitive4-L load cell digital indicator has an IP65 dust tight protection rating making it ideal to use in this harsh construction environment.  If that’s not enough we can also provide an optional waterproof front panel cover for that extra level of protection.

The intuitive4-L digital panel meter has a modular construction meaning that PD Edenhall Ltd could configure it to their exact specification saving them money.  Options available include voltage or current analogue outputs, 2 or 4 alarm relays and a serial data output in one of several formats including RS232 ASCII, RS485 ASCII and RS485 ModBus RTU, making this a truly flexible load cell digital indicator.

@AppMeas #PAuto @EdenhallUK

The world of virtual commissioning.

15/06/2018
Robert Glass, global food and beverage communications manager at ABB explores the concept of virtual commissioning and how system testing can benefit the food industry.

In 1895, pioneer of astronautic theory, Konstantin Tsiolkovsky, developed the concept of the space elevator, a transportation system that would allow vehicles to travel along a cable from the Earth’s surface directly into space. While early incarnations have proven unsuccessful, scientists are still virtually testing new concepts.

Industry 4.0 continues to open up new opportunities across food and beverage manufacturing. In particular, these technologies help improve manufacturing flexibility and the speed and cost at which manufacturers are able to adapt their production to new product variations. Virtual commissioning is one of these key technologies.

What is virtual commissioning?
Virtual commissioning is the creation of a digital replica of a physical manufacturing environment. For example, a robotic picking and packing cell can be modeled on a computer, along with its automation control systems, which include robotic control systems, PLCs, variable speed drives, motors, and even safety products. This “virtual” model of the robot cell can be modified according to the new process requirements and product specifications. Once the model is programmed, every step of that cell’s operation can be tested and verified in the virtual world. If there are changes that are needed in the process automation or robot movement, these can be made on the same computer, allowing the robot to be reprogrammed, orchanges made to the variable speed drives and PLC programming. The ABB Ability™ RobotStudio is one tool that enables this type of virtual commissioning.

Once reprogrammed, the system is tested again and if it passes, it’s ready for physical deployment. This is where the real benefits become tangible. By using virtual commissioning to program and test ahead of time, less process downtime is required and manufacturers can reduce the changeover risks.

Automation programming and software errors in a system can be incredibly difficult and costly to rectify, particularly if they are found later on in the production process. Research by Austrian software testing frim Tricentis, estimated that software bugs, glitches and security failures cost businesses across the world $1.1 trillion.

To achieve the full potential of virtual commissioning, the simulation must be integrated across the entire plant process, including both the planning and engineering phase. Known as simulation-based engineering, this step is integral for the installation of reliable systems. The use of simulations in a plant is not a new concept, in fact virtual commissioning has been researched for more than a decade.

The benefits
The implementation of virtual commissioning brings with it a number of benefits. The ‘try before you buy’ concept allows plant managers to model and test the behavior of a line before making any physical changes. This saves time as the user can program the system’s automation while testing and fixing errors. The use of a digital model can also reduce risk when changing or adding processes.

One company which has seen significant improvements in production since investing in virtual commissioning is Comau, a supplier of automotive body and powertrain manufacturing and assembly technologies. Comau’s head of engineering and automation systems, Franceso Matergia, said: “We were able to reprogram 200 robots in just three days using virtual commissioning as opposed to roughly 10 weekends had the work been done on the factory floor.”

Just as you wouldn’t build a space elevator without meticulous planning and years of small scale prototyping, it’s very cost and time beneficial to build and test in a virtual environment where you can find the bugs and discover the unforeseen challenges and mitigate them without added downtime or loss of production. It’s much better to discover that bug while on the ground versus at 100,000 feet midway between the surface of the earth and that penthouse in space.

@ABBgroupnews #PAuto @StoneJunctionPR

Monitoring and managing the unpredictable.

07/06/2018
Energy sector investments in big data technologies have exploded. In fact, according to a study by BDO, the industry’s expenditure on this technology in 2017 has increased by ten times compared to the previous year, with the firm attributing much of this growth to the need for improved management of renewables. Here, Alan Binning, Regional Sales Manager at Copa-Data UK, explores three common issues for renewables — managing demand, combining distributed systems and reporting.

Renewables are set to be the fastest-growing source of electrical energy generation in the next five years. However, this diversification of energy sources creates a challenge for existing infrastructure and systems. One of the most notable changes is the switch from reliable to fluctuating power.

Implementing energy storage
Traditional fossil-fuel plants operate at a pre-mitigated level, they provide a consistent and predictable amount of electricity. Renewables, on the other hand, are a much more unreliable source. For example, energy output from a solar farm can drop without warning due to clouds obscuring sunlight from the panels. Similarly, wind speeds cannot be reliably forecasted. To prepare for this fluctuation in advance, research and investment into energy storage systems are on the rise.

For example, wind power ramp events are a major challenge. Therefore, developing energy storage mechanisms is essential. The grid may not always be able to absorb excess wind power created by an unexpected windspeed increase. Ramp control applications allow the turbine to store this extra power in the battery instead. When combined with reliable live data, these systems can develop informed models for intelligent distribution.

Britain has recently become home to one of the largest energy storage projects to use EV batteries. While it is not the first-time car batteries have been used for renewable power, the Pen y Cymoedd wind farm in Wales has connected a total of 500 BMW i3 batteries to store excess power.

Combining distributed systems
Control software is the obvious solution to better monitor this fluctuating source of power. However, many renewable energy generation sites, like solar PV and wind farms, are distributed across a wide geographical scope and are therefore more difficult to manage without sophisticated software.

Consider offshore wind farms as an example. The world’s soon-to-be-largest offshore wind farm is currently under construction 74.5 miles off the Yorkshire coastline. To accurately manage these vast generation sites, the data from each asset needs to be combined into a singular entity.

This software should be able to combine many items of distributed equipment, whether that’s an entire wind park or several different forms of renewable energy sources, into one system to provide a complete visualisation of the grid.

Operators could go one step further, by overlaying geographical information systems (GIS) data into the software. This could provide a map-style view of renewable energy parks or even the entire generation asset base, allowing operators to zoom on the map to reveal greater levels of detail. This provides a full, functional map enabling organisations to make better informed decisions.

Reporting on renewables
Controlling and monitoring renewable energy is the first step to better grid management. However, it is what energy companies do with the data generated from this equipment that will truly provide value. This is where reporting is necessary.

Software for renewable energy should be able to visualise data in an understandable manner so that operators can see the types of data they truly care about. For example, wind farm owners tend to be investors and therefore generating profit is a key consideration. In this instance, the report should compare the output of a turbine and its associated profit to better inform the operator of its financial performance.

Using intelligent software, like zenon Analyzer, operators can generate a range of reports about any information they would like to assess — and the criteria can differ massively depending on the application and the objectives of the operator. Reporting can range from a basic table of outputs, to a much more sophisticated report that includes the site’s performance against certain key performance indicators (KPIs) and predictive analytics. These reports can be generated from archived or live operational data, allowing long term trends to be recognised as well as being able to react quickly to maximise efficiency of operation.

As investments in renewable energy generation continue to increase, the need for big data technologies to manage these sites will also continue to grow. Managing these volatile energy sources is still a relatively new challenge. However, with the correct software to combine the data from these sites and report on their operation, energy companies will reap the rewards of these increasingly popular energy sources.


#EMREx Connecting, communicating and creating in Netherlands.

14/03/2018

The country of the Netherlands is where the Rhine enters the sea. It is a country which has physically built itself out of the inhospitable North Sea. Often called Holland – which is the name of one (actually two) of its provinces – it even more confusingly for the English speaking world inhabited by the Dutch speaking Dutch. If you really want to know more about Holl.. er sorry, The Netherlands watch the video at the bottom of this piece.

Although not officially the capital of The Netherlands, Amsterdam is, The Hague is the seat of Government and official residence of the King. It was selected by the Emerson User Group as the venue for their European, Middle East & African assembly, refereed to as #EMrex on twitter. These assemblies – can we say celebrations? – occur every two years. The last was held in Brussels, the capital of the neighbouring Kingdom of the Belgians and of the European Union. An sccount of happenings there are in our postin “All change at Brussel Centraal.” (18/4/2016)

Lots of pictures from the event!

The size of this event was in marked contrast to the Brussels meet which was overshadowed by the terrible terrorist attacks in that city only three weeks earlier which presented transport difficulties. This time there were over one thousand six hundred delegates filling the huge hall of the Hague Convention Centre.

Another difference referred to in many of the discussions both formal and informal were the two great uncertainties effecting all businesses and industries – the possibility of a trade war with the USA under its current administration and nearer home the aftermath of the BREXIT decision – the exit of the British from the largest economic bloc on the planet. Many developments have been put on the long finger pending clarification on these issues.

Mary Peterson welcomes delegates

Why are we here?
This event continued in the vein of previous meetings. The emphasis continuing to move to perhaps a more philosophical and certainly a more holistic view of how the automation sector can help industry. This was made clear in the introductory welcome by Novartis’s Mary Peterson, Chair of the User Group, when she posed the question, “Why are we here?”

“This is a conference for users by users.” she said. It is a place to discuss users’ practical experiences; continuing our profissional development; learning best practice and proven solutions and technology roadmaps. But above all it presented an opportunity to connect with industry leaders, users and of course Emerson experts.

For other or more detailed information on happenings and/or offerings revealed at this event.
News Releases

and on Twitter #EmrEx

The emphasis is on the totality of services and packages not on individual boxes. Emerson’s European President Roel Van Doren was next to address the assembly. We should know our plant but be unafraid to use expertese and knowledge to keep it fit for purpose. Monitor the plant constantly, analyse what is required and then act. This means seeing how the latest advances might improve production. This means harnessing the “new technologies.” In passing he drew our attention that Emerson had been recognised earlier this year as ‘Industrial IoT Company of the Year’ by IoT Breakthrough.

The path is digital
A very striking presentation was given by Dirk Reineld, Senior VP Indirect Procurement with BASF. He brought us to the top of Rome’s Via de Conciliazione on 19th April 2005. We saw the huge crowd looking towards the centre balcony as the election of a new pope was announced. He then moved forward to the 13th March in 2013, the same place but what a difference in such a short time. This time it seemed that everybody had a mobile phone held to take photographs of the announcement of the election of Francis. All we could see was a sea of little screens. He used this to emphasize a point “We are underestimating what is happening & its speed.” This is not helped by a natural conservatism among plant engineers. Change is happening and we either embrace it or get left behind. It is becoming more and more clear that in front of us “the path is digital!” He presented some useful examples of digitalisation and collaboration at BASF.

PRESENTATIONS

Registered delegates have access to slides from the main presentation programme. These slides are available for download via the Emerson Exchange 365 community (EE365).

Emerson Exchange 365 is separate from the Emerson Exchange website that presenters & delegates used before Exchange in The Hague. So, to verify your attendance at this year’s conference, you must provide the email you used to register for Exchange in The Hague. If you are not already a member of EE365 you will be required to join.

To access the presentations, visit The Hague 2018 and follow the prompts. The first prompt will ask you to join or sign in.

Something in this particular EmrEx emphasised how things are moving and those unprepared for the change. Among some of the press people and others there was disappointment expressed that there was not a printed programme as in previous years. This correspondent is used to going away into a corner and combing through the printed agenda and selecting the most relevant sessions to attend. This was all available on line through the “Emerson Exchange Web App.” This was heralded as a “a great preshow planning tool.” All we had to do was enter a link into our our web-browser on our phones and away you went. Yes this is the way to go certainly and although I am inclined to be adventurous in using social media etc I and some (if not many) others found this a step too far to early. It was not clear that a printed version of the programme would not be available and the first hour of a conference is not the best time to make oneself au fait with a new app.

Having said that while many of the journos took notes using pencil and paper they were not adverse to taking photos of the presentation slades so they could not be said to qualify as complete luddites!

Terrific progress but…

Rewards of efficiency
This event was being held at the same time as CERAWeek 2018 in which Emerson was an important participant. Some Emerson executives thus made the trans Atlantic journey to make presentations. One of those was Mike Train, Emerson’s Executive President who delivered his talk with no apparent ill effects. In effect he was asking a question. “Just how effective is progress?” Yes, we HAVE made phenomenal progress in the last 30 years. “Modern automation has made plants more efficient, reliable and safer, but, the ‘Efficiency Era’ is reaching diminishing returns….Productivity seems to be stagnation while the workforce is stretched.”

He postulated five essential competancies for digital transformation.

  1. Automated workflows: Eliminate repetitive tasks and streamline standard operations.
  2. Decision support: Leverage analytics and embedded exportise.
  3. Mobility: Secure on-demand access to information and expertese.
  4. Change management: Accelerate the adoption of operational best practices.
  5. Workforce upskilling: Enable workers to acquire knowledge and experience faster.

Making the future!

Making the future
The next speaker was Roberta Pacciani, C&P Manager Integrated Gas and Upstream Technology with Shell. She is also President of the Women’s Network at Shell Netherlands. She spoke on leveraging the best available talent to solve future challenges. I suppose that we would have classified this as a feminist talk but of course it isn’t. As the presenter said it is not so much a feminist issue as a people issue. “Closing the gender gap in engineering and technology makes the future.”  This was a useful presentation (and in this correspondent’s experience unusual) and hopefully will be helpful in changing perceptions and preconceptions in STEM and our own particular sector.

As partof EmrEX there is an exhibition, demonstration area. Delegates may see innovative technologies applied to their plant environment. They meet with experts about topics such as getting their assets IIoT ready or how to use a Digital Twin to increase performance and explore options to prepare their plant for the future. As a guide – printed as well as on-line – the produced a Metro-like guide.
Using this we could embark on a journey through products, services and solutions where Emerson together with their partners could help solve operational and project challenges.

One of the most popular exhibits was the digital workforce experience. Here we visited a plant and were transported magically to former times to see just how different plant management is now and particularly with the help of wireless and digitisation.

It happened!

One of the good things about this sort of event is the opportunity to meet friends for the first time though social media. Sometimes one does not know they are attending unless the tweet something. Thus I realised that an Emerson engineer was present and so I went looking for him in the expos area. This it was that Aaron Crews from Austin (TX US) and I met for the first time after knowing each other through twitter & facebook for a frightening ten years. Another of these virtual friends, Jim Cahill, says, “It hasn’t happened without a picture!” So here is that picture.

The following morning there were a series of automation forum dedicated to various sectors. The Life-Sciences Forum was one which was very well attended.  Ireland is of course a leader in this sector and we hope to have a specific item on this in the near future. Emerson have invested heavily in the national support services as we reported recently.

Each evening there were social events which provided further opportunities for networking. One of these was a visit to the iconic Louwman Transport Museum where reside possibly the largest collections of road vehicles from sedan chairs through the earliest motor cars up to the sleekest modern examples. These are all contained in a beautiful building. The display was very effectively presented and one didn’t have to be a petrol-head – and believe me there were some among the attendance – to appreciate it.

It is impossible to fully report an event like this in detail. One can follow it on twitter as it happens of course. And there will be copies of many of the presentations and videos of some of the sessions on the website.

The Emerson User Group Exchange – Americas will continue “spurring innovation” in San Antonio (TX USA) from 1st to 5th October 2018. It looks exciting too.

We promised at the top of this blog an exposé of the country often called Holland in English –


So now you know!

@EMR_Automation #Emrex #Pauto

Power distribution for the digital age.

01/06/2017
Éirin Madden, Offer Manager at Schneider Electric Ireland talks about the smart devices that enable facility managers to take preventive measures to mitigate potential risks in power distribution.

Éirinn Madden

We are currently witnessing the rise of a new chapter in power distribution. After all, today’s digital age is going to impact our lives and business as much as the introduction of electricity did at the end of the 19th century. This is going to bring with it a wave of innovations in power that will blur the lines between the energy and digital space. The traditional centralised model is giving way to new economic models and opportunities, which redefine the core basics of power distribution; efficiency, reliability, safety, security, and performance.

Many of us know the inconvenience of experiencing a blackout at home, but the impact is much more far reaching when it occurs in your corporate facility – from lost revenue and unhappy tenants, to more extreme scenarios like the loss of life. Recently, tourists and shoppers in central London were plunged into darkness after an underground electric cable faulted on a high voltage network caused an area-wide power cut. Theatre shows were cancelled and shops were closed, leaving shoppers and storeowners frustrated and disappointed.

A call to get smart 
How can such outages be prevented? At the core of smart power distribution systems are smart devices that enable facility managers to take preventive measures to mitigate potential risks. These devices have become more than just responsible for controlling a single mechanism. They now measure and collect data, and provide control functions. Furthermore, they enable facility and maintenance personnel to access the power distribution network. 

In many places throughout the power network the existing intelligence can be embedded inside other equipment, such as the smart trip units of circuit breakers. These smart breakers can provide power and energy data, as well as information on their performance, including breaker status, contact wear, alerts, and alarms. In addition to core protection functions, many devices are also capable of autonomous and coordinated control, without any need for user intervention.

Today, hardware such as the Masterpact MTZ Air Circuit Breaker (ACB) has evolved to include new digital capabilities. One of these primary new digital technologies revolves around communication abilities, providing a way to send the data the device is gathering to building analytic software, where it can be put to use.

Building analytics is another enabler for smart power distribution systems, offering an advanced lifecycle managed service that delivers automated fault detection, diagnosis, and real-time performance monitoring for buildings. Information is captured from building systems and sent to cloud-based data storage. From that point, an advanced analytics engine uses artificial intelligence to process building data and continuously diagnose facility performance by identifying equipment and system faults, sequence of operation improvements, system trends, and energy usage. 

Combatting operational efficiency decline
One of the biggest challenges facing facility managers today is the need to maintain existing equipment performance. Components are prone to breaking or falling out of calibration, and general wear and tear often results in a marked decline of a buildings’ operational efficiency. What’s more, reduced budgets are forcing building owners to manage building systems with fewer resources. The issue is then further exacerbated by older systems becoming inefficient over time. Even when there is budget at hand, it is time-consuming and increasingly difficult to attract, develop, and retain staff with the right skills and knowledge to make sense of the building data being generated. 

When it comes to switchgear in particular, there is the challenge around spending when it comes to maintenance and services. There is no doubt that regularly scheduled maintenance extends the life of existing switchgear. However, at some point facilities must decide whether to maintain or replace with new equipment. Of course, although keeping up with equipment maintenance has its challenges, especially with limited resources, the safety and reliability of a facility depends on it and must be the priority. 

Looking ahead with building analytics
For many building owners and occupants, they are also looking at how building analytics can be used beyond just safety and reliability to make a difference to the bigger picture of workplace efficiency. From comfort to space, and occupant services, to management dashboards, organisations are now placing more emphasis on well-being at work. When building analytics recommendations are implemented, the results are obvious – enhanced building performance, optimised energy efficiency through continual commissioning, and reduced operating costs — all with a strong return on investment and an improved building environment.

@SchneiderElec #Power #PAuto @tomalexmcmahon

Interesting facts emerge from financial report.

15/05/2017
E+H reports sales flat, but sees growth in Ireland, reports Processingtalk.info‘s  Nick Denbow from Basel.

This year, Endress+Hauser expanded the presentation of their annual financial results, inviting journalists from not only Germany and Switzerland, but including others from Belgium, the Netherlands and Great Britain. In all 70+ attendees heard Klaus Endress and Matthias Altendorf say that the consolidated Group sales fell slightly between 2015 and 2016, by 0.2%, achieving Euro2.1Bn. This fall was actually only because of currency fluctuations. “Currencies created a headwind for us last year,” said Altendorf. Working from the value of sales in local currencies, sales in total actually increased by 2.1%. Whilst the Group is family owned, their annual report is published and audited to the standards expected of any other international business.

CEO Matthias Altendorf emphasised that “When compared to overall industry growth, we held our own”. E+H performed well in Europe, but sales in America declined. Africa and the Middle East experienced solid growth, but in the Asia-Pacific region business stagnated.

Within Europe, the best performances for E+H came from Ireland, Italy and Finland. The best performing sectors in all countries were food & beverage, life sciences, and water & waste water. Overall business declined in oil & gas, chemicals and primary industries like metals. The power and energy industry sectors showed good performance outside Germany, where E+H also felt the effect of weak German exports and some internal restructuring. The oil & gas decline badly affected sales in USA, UK and Norway, although the UK sales centre gave a good performance by aligning efforts with other active market sectors.

Investment continues.

Production

E+H plans for investment and growth continue for the current year. Earlier in the week a new factory extension was opened in Reinach, where flow products are manufactured. (see Read-out Signpost – “Flowmeter output growth requires new facilities” – 5 May 2017).  The journalists were given a tour of the manufacturing facility in Maulberg (D), where a new extension to the production area is in operation, and a new NMi level measurement system calibration facility for radar based systems has just been completed. This is certified suitable for calibration of the Micropilot NMR81 radar system, working at 80GHz, which achieves a +/-0.5mm accuracy over a 30m range, for use in oil storage tanks and oil terminals. There are plans now to extend this calibration facility to allow such calibration out to 40metres, as well as to extend the factory yet further: 1912 people work at E+H Maulburg, and 5200 people in the Basel region, out of the total E+H staff of 13,000.

Analytical measurements
The biggest growth area in E+H is actually in the analytical instruments that use Raman spectroscopy to analyse liquid and gas streams on-line. The major industries now applying this technique are within the life sciences sector, where immediate analysis of input and both gaseous and liquid effluent streams enables much closer control of biochemical and fermentation processes. Indeed the 2017 issue of the E+H corporate magazine “Changes” features a major focus on new applications in the Life Sciences industries.

Other new analytical techniques are developed for monitoring water treatment processing, for example in the new Swiss plants which by law have to have a fourth stage of purification, to remove hormones, phosphorus and other drug residues. The strength of E+H here derives from their strategic decision a few years ago to invest in the process analytical area, particularly in the field of spectroscopy, acquiring Kaiser Optical, Analytik Jena and SpectraSensors. “Our analytics strategy has been validated by the market,” said Matthias Altendorf.

Bundling IIoT activities

Digitization

The acquisition of German SensAction AG in early 2017 also ties in with Strategy 2020+ which was rolled out last year. The company, headquartered in Coburg (D), manufactures innovative systems for measuring concentrations in liquids. Endress+Hauser is tackling the challenges of digitalization by bundling a number of activities. A new subsidiary in Freiburg in Breisgau,(D), is working exclusively on products, solutions and services related to the Industrial Internet of Things (IIoT).

The significance of digitalization can also be seen in the growing number of patent registrations. There were 273 first filings in 2016. The intellectual property rights portfolio thus boasts more than 7,000 active patents. R&D spending rose to 7.8 percent of sales. Endress+Hauser introduced 64 new products to the market. “We are investing in innovation for our customers,” underlined the CEO.

Trends in automation.
The focus for E+H sales and their customer base is broadly on automation engineers, so it was interesting to hear Matthias Altendorf comment that the statistics for industrial output show that the Britain has now dropped out of the top 10 countries in terms of automation business activity, whereas they had held a prominent position there some years ago.

The other aspect of interest was that there are distinct differences between countries, in terms of the sex of the engineers involved in the major projects served by E+H. In Germany they are mostly male, whereas the majority of engineers in Turkey are female. In South Korea and India there are high percentages of female engineers (and engineering journalists). Also, by industry, it is noticeable that in the biochemical and life science sectors the engineers are predominantly female.

 @Endress_Hauser #PAuto #IoT