Permission to change and develop in the Life Sciences!

20/06/2017
• Enjoy a unique environment to meet and gain input from all stake holders on industry direction, challenges and solutions.
• Shape your strategy on the way solutions should be developed and applied in your facility
• Understand how partnering can take you further, faster and with reduced risk
• Experience hands on demonstrations of automation equipment and packages.

The invitation was interesting, and challenging. “Future.Now – Developing the Life Sciences Landscape Together” was an arresting title. It was a co-operative event between National Institute for Bioprocessing Research and Training (NIBRT) and Emerson. We were invited to “Boost your knowledge, gain from the experience of others and increase your professional network at NIBRT state of the art facility in Dublin!”

Mike Train, Executive President with Emerson explains their focus under the attentive eye of European President Roel Van Doren.

This correspondent was aware of the NIBRT facility but had very little idea of what it was real function or its relevance to Irish industry. This was an opportunity find out. Further looking through the programme two things became apparent. One was the calibre of personnel speaking from the Emerson organisation and then the application rather than product orientation of the various sessions.

It proved to be a very interesting two days.

Day 1: Working together towards a common future.
Presentations from NIBRT, Industrial Development Authority (IDA), GSK, Alexion, Zeton, Novo Nordisk and Emerson Automation Solutions.

Pharma v Biopharma

After a short welcome fro Emerson Europe President, Roel Van Doren, the CEO of NIBRT, Dominic Carolan, outlined the foundation and raison d’etre of the organisation. It is a training and research in the area of bioprocessing. It is located in a new, world class facility in Dublin (IRL). As medical science advances “simple” chemistry, while still essential, is not fully capable of solving all health issues – Pharma versus Biopharma. Bioprocessing is a specific process that uses complete living cells or their components (e.g., bacteria, enzymes, chloroplasts) to obtain desired products.

Thus this facility exists to support the growth and development of all aspects of the biopharmaceutical industry in Ireland. It is purpose built to closely replicate a modern bioprocessing plant with state of the art equipment.

Making Ireland ready – a good news story.
Dr Chantelle Keirnan, Scientific Advisor with the Industrial Development Authority (IDA), described the far-seeing intuitive initiative to look at bioprocessing “before it was profitable or popular!” This state body is responsible for the attraction and development of foreign investment in Ireland and had been extraordinarily successful in attracting nine of the top ten pharma companies to set up manufacturing processing plants in Ireland. They considered at the turn of the century that bioprocessing was the way that life science was going and took steps to ensure that Ireland was ready. One of those steps was the provision of Government funding of NIBRT.

Togged out for the tour

Many of the delegates – in excess of one hundred attended some from other countries – donned white coats and took the opportunity to tour the impressive facility during the event. It includes a purpose-built, multi-functional building which replicates the most modern industrial bioprocessing facility. Some idea of this facility may be gleaned from their website here.

This is a good news story. How often are decisions of state organisations regarded, not entirely without justification, with a jaundiced eye? Those that are good are “oft interréd with their bones!” The vision that saw this development in industry and the individuals who having caught the ball ran with it and brought it so successfully to fruition is worthy of equal attention and praise.

The rest of the day was an examination of the industry, processes and looking into the future. Mike Train, Executive President of Emerson spoke on the changes that are influencing industry and his company’s focus. We are facing “an evolution not a revolution” he stated, a point emphasised by other speakers throughout the day. He also stressed the importance for giving permission to change. (See full list of speakers at below.)

Pictures from the event!

We then had a series of speakers from the industry, people who get their hands dirty so to speak in actual processing speaking of their experiences and challenges. Speakers from GSK and Novo Nordisk explored areas like partnership, legacy issues, building on or expanding existing plants, saving energy, wireless. There was some discussion on the cloud and its advantages and just how vulnerable it might be to security breaches.

The discussion on handling all this data and identifying and retrieving those pieces of data which are really useful to the process brought to mind the prophetic words of the American media theorist, Neil Postman years ago, “…a central thesis of computer technology – that the principal difficulty we have in solving problems stems from insufficient data – will go unexamined. Until, years from now, when it will be noticed that the massive collection and speed of light retrieval of data have been of great value to large scale organisations but have solved very little of importance to most people and have created at least as many problems for them as they have solved…” (Neil Postman: “Amusing ourselves to death:” 1985)

Peter Zornio, Chief Technology Officer with Emerson gave their philosophy in meeting the demands of “Life Science Visions.” He lauded the various discussion groups such as the Biopharma Operations Group in helping how to keep up to date with technology and fostering new ideas.

We are on a digitizing journey. Moving from manual and paper to digital recording and control.

Day 2: “New Technology, New Processes, New solutions!”
Presentations from BioPharmaChem, GSK, Infinity Automation and Emerson.

The day started with a presentation on modular flexible manufacturing – introducing the PK Controller and a little later in the day there was an exposition on DeltaV Discovery/DeltaV 14 in maintaining data and transferning and easing technology transfer through the life cycle of drug development.

In his second presentation Peter Zornio gave the business case behing IIoT. IoT is usually referring to domestic, building environment and other civil applications. But it is also useful in the industrial environment where it is referred to as IIoT. Initially it was a link up at the instrument and control area but of late it is spreading to the portfolio of sensors. Their emphasis is on “the first mile!” (This is a backward reference to the perennial problem in many, especially rural, areas of “the last mile” – the internet connection directly into the home! – a heart felt sigh from your correspondent!)

The Real Challenges!

Ian Allen of Infinity Automation spoke on challenges to the life science automation world. “Don’t go backward to go forward” he said. We must use things like data integrity, cyber security, Microsoft dependencies and Industrie 4.0 as “gifts to leverage the opportunity and change!” The real challenge is not so much the technology but our use of it. We were coming back to “permission for change!”

We might perhaps use the words of the Bard of Avon, “The fault, dear Brutus, is not in our stars. But in ourselves….”  The “gifts” are there. The Technology is there or on the way.

Let’s own these gifts and make them our own.

 

Pic: Travis Hesketh


The Speakers:

Day 1
Dominic Carolan
CEO – NIBRT
Dominic Carolan was appointed CEO of NIBRT in April 2015. Mr. Carolan previously held senior roles in Mallinckrodt (Dublin), Genzyme (Waterford), also Genzyme (Corporate) where he was Senior Vice President of Manufacturing, and in Sanofi, where he headed their global network of Sterile Injectable Lyophilisation sites. He has successfully lead the startup of two significant Pharma & BioPharma facilities in Ireland and has a proven track record in operations leadership and in attracting and developing the talent required to deliver long term success. A graduate of UCD in Chemical Engineering, Mr. Carolan was Chairman of BioPharmaChemical Ireland from 2008-2010.
Dr Chantelle Kiernan
Scientific Advisor – IDA

Dr. Chantelle Kiernan joined IDA in September of 2009 and is responsible for attracting research related foreign direct investment for Ireland. Chantelle has responsibility for the Multinational research portfolio – spanning Pharmaceutical, Biotechnology, Medical Device, Engineering Food services industries. Chantelle has spent her career equally dispersed between academia and industry. She holds a PhD in Immunology from Trinity College Dublin in the area of immunomodulation and continued her academic career with a Post-Doctoral fellowship in Harvard University, Boston. Chantelle is currently undertaking an MSc in International Business law. She has spent almost fifteen years in industry. In her current role as Scientific Advisor for the IDA, she has been integrally involved in attracting and securing large scale R&D foreign direct investments for Ireland.

Mike Train
Executive President – Emerson Automation Solutions
Michael H. Train leads the Automation Solutions business of Emerson, which posted sales of $10.2 billion in fiscal 2015. Train began his career with Emerson in 1991 as an international planner, then took on additional responsibilities in a number of executive posts that included serving as President of Emerson Japan and Korea, VP of Corporate Planning, President of Emerson Process Management Asia Pacific, and President of Emerson’s Rosemount business. He was most recently President of Global Sales for Emerson Process Management, responsible for sales, service, support, and customer satisfaction for all products and services across five world-area organizations. In that role he was also part of the leadership team that drove strategic initiatives and investments for the entire business group. Train earned a bachelor’s degree in electrical engineering from General Motors Institute and an MBA from the Johnson Graduate School of Management at Cornell University. He currently serves on the management school’s advisory council and was a 2008 Eisenhower Fellowship recipient.
Dave Tudor
Vice President, Head of GMS Strategy – GSK
Dave joined GSK in 1992 at Worthing as a PhD Chemist from Glasgow University. He has over 20 years’ experience with the company carrying out a number of Technical, Compliance and Manufacturing leadership roles. In 1997 he moved to Irvine to take up a lead chemist role before coming Quality Control Manager in 1998. He joined the site leadership team in 2001 to run Technical Development before moving to manufacturing as Actives Production Director in 2005. During this time he completed a Masters degree in Manufacturing Leadership at Cambridge University. In 2007 he moved to GSK House to work on a central network re-structuring project before becoming Site Director at Montrose in October 2008. At Montrose, he led the transformation of the site to manufacture over 12 products for GSK including a major investment programme. In 2011 he was appointed VP Primary Supply Chain with responsibility for global Active Pharmaceutical Ingredients (API) manufacture and supply, a network of GMS sites across the world including facilities in Asia and Europe. In 2017 he was appointed VP Head of GMS Strategy with responsibility for manufacturing strategy, deployment of strategic programmes, performance management and advocacy. He plays an active role with a number of Governments and is currently co-chair of the Life Sciences Scotland Industry Leadership Group. Dave is also a member of UK Chemicals Industry Association Council and Board. Dave is married with 4 children and lives in Troon, Ayrshire. He enjoys all sports, particularly football, is a keen reader of Scottish history and does cooking to relax.
Peter Zornio
Chief Strategic Officer – Emerson Automation Solutions
As Chief Strategic Officer for Emerson Automation Solutions, Peter has responsibility for overall coordination of technology programs, product and portfolio direction, and industry standards across the Automation Solutions group. He has direct responsibility for the product definition and development organizations for control systems and software products. He has been at Emerson for 10 years. Prior to Emerson, he spent over 20 years at Honeywell in a variety of technology and marking roles, most recently as overall product management leader. Peter holds a degree in Chemical Engineering from the University of New Hampshire.
Herman Bottenberg
Marketing Director,, Zeton

PDEng. Ir. Herman Bottenberg is a chemical engineer with 15+ years of industrial experience, along with two years of Post academic work on Plant Design. He worked for 17 years at Zeton B.V. in The Netherlands, with five years of experience in project engineering and project management. The last 12 years he has been active in business development, sales and marketing. Since 2016 Herman is also responsible for the Marketing and Sales group at Zeton B.V. Herman has specialised in transformation of processes from batch to continuous, process intensification and modular processing plants for pharma and chemical industry.

Day 2
 Matt Moran
Director – BioPharmaChem Ireland
Matthew Moran is Director of BioPharmaChem Ireland. He graduated in Chemistry at Trinity College Dublin in 1980 and in Chemical Engineering at University College Dublin in 1981; he holds an MBA also from University College Dublin (Smurfit School of Business). He worked for over ten years in the pharmaceutical industry where he held a number of management positions both in active ingredient and dosage form manufacture. He is a member the European Chemical Industry Council (CEFIC). Matthew Moran is a Board member of the Active Pharmaceuticals Ingredients (API) Committee of CEFIC (CEFIC/APIC) and The European Association for Bioindustries (Europabio) BioPharmaChem Ireland represents the interests of the biopharmachem sector in Ireland. CEFIC/APIC represents the European API Industry. Europabio represents the European Biotech Sector.
Ian Allan
Automation Consultant – Infinity Automation
Currently the Managing Director of Infinity Automation, a relatively new company carrying out Automation & MES Consultancy, Strategic Planning and Major Program/Project Health checks, with blue chip Global Life Science companies and Strategic vendors that support that Industry. Formerly Ian was the Global Head of Automation & MES with Novartis, where he was responsible for the Manufacturing Automation Strategy and MES Program within Technical Operations in the Vaccines division.  Prior to that he worked for GSK as Global Automation Director responsible for Automation, Process Control and MES across 73 sites worldwide. There he led a team that developed a library of Emerson DeltaV modules to be deployed in multiple Bulk API sites across the world, as well as developing a blueprint for MES integration and Network delivery of Electronic Batch Records. Prior to that he held several roles in GSK within the Engineering and Automation departments. Ian started his career with IBM as a junior engineer when computers were a little bigger than they are today and holds a BSc in Electrical & Control Engineering from Strathclyde University. He is currently facilitating GSK’s Global Automation Steering Team and is leading the Digital Factory Automation workstream for a new Hybrid Manufacturing platform with the first instance being delivered in GSK Singapore Jurong site.
Colin Chapman
Director of Manufacturing IT – GSK
Colin Chapman is a Chemical Engineer with nearly 20 years experience in Life Sciences with GSK. Colin’s career has spanned across process engineering & automation, operations and new product introduction in both commercial manufacturing and clinical supply chains. In his current role as Director of Manufacturing IT Colin has successfully led the introduction of Manufacturing Operations Management across the clinical supply chain driving business process re-engineering and global workflow automation using technologies such as Syncade. GSK’s continuing program focuses on three value drivers, Compliance, Business Intelligence and Productivity.
Klaus Erni
Product Manager & Namur 148 Board Member – Emerson Automation Solutions
Klaus started his Emerson career in 2003 in Germany, where he was working as a Technical Manager for Key Accounts before he transferred to Austin, TX to become the DeltaV Hardware Product Marketing Manager. In 2015, he went back to Europe and took over another Global Role, being now the Technical Consultant to some major Strategic Accounts. While in Germany with Emerson, he was responsible for the technical aspects of the DeltaV Systems during the Sales and Implementation Phase, as well utilizing the latest Hardware and Software features while upgrading and expanding Systems on Key Customer sites. Prior to Emerson, Klaus was with the Hoechst AG, he did several Engineering projects with various PLC and DCS and SIS Systems and was as well a RS3 System User.
Danny Vandeput
Director Pervasive Sensing Strategies – Emerson Automation Solutions
The (Industrial) Internet of Things (IIoT) is revolutionizing the way we live but it also provides many new challenges to the industry. This can create confusion, uncertainty – combined with fuzzy statements – and different opinions. My great passion is to bring clarity in the Industrial Internet of Things and what benefits it can bring for you. I help industries to find the right perception of IIoT, how sensors can maximize profit, reduce downtime and bring the ROI into the IoT. Being already 23 years with Emerson I have assisted many types of industries on their way to Top Quartile Performance. This includes amongst other trainings, workshops, audits and implementing solutions.
#PAuto @EMR_Automation @NIBRT_ #IIoT @HHC_Lewis

Continuous compliance with PLM.

27/07/2016
Adam Bannaghan, technical director of Design Rule, discusses the growing role of PLM in managing quality and compliance.

The advantages of product lifecycle management (PLM) software are widely understood; improved product quality, lower development costs, valuable design data and a significant reduction in waste. However, one benefit that does not get as much attention is PLM’s support of regulatory compliance.

Compliance-PLMNobody would dispute the necessity of regulatory compliance, but in the product development realm it certainly isn’t the most interesting topic. Regardless of its lack of glamour, failure to comply with industry regulations can render the more exciting advantages of PLM redundant.

From a product designer’s perspective, compliance through PLM delivers notable strategic advantages. Achieving compliance in the initial design stage can save time and reduce engineering changes in the long run. What is more, this design-for-compliance approach sets the bar for quality product development, creating a unified standard to which the entire workforce can adhere. What is more, the support of a PLM platform significantly simplifies the compliance process, especially for businesses operating in sectors with fast-changing or complicated regulations.

For example, AS/EN 9100, is a series of quality management guidelines for the aerospace sector, which are globally recognised, but set to change later this year. December 2016 is the target date for companies to achieve these new standards – a fast transition for those managing compliance without the help of dedicated software.

Similarly, the defence industry has its own standards to follow. ITAR (International Traffic in Arms Regulations) and EAR (Export Administration Regulations) are notoriously strict exporting standards, delivering both civil and criminal penalties to companies that fail to comply.

“Fines for ITAR violations in recent years have ranged from several hundred thousand to $100 million,” explained Kay Georgi, an import/export compliance attorney and partner at law firm Arent Fox LLP in Washington. “Wilful violations can be penalised by criminal fines, debarment, both of the export and government contracting varieties, and jail time for individuals.”

PLM across sectors
The strict nature of all these regulations is not limited to aerospace and defence however. Electrical, food and beverage, pharmaceutical and consumer goods are also subject to different, but equally stern, compliance rules.

Despite varying requirements across industries, there are a number of PLM options that support compliance on an industry-specific basis. Dassault Systèmes ENOVIA platform, for example, allows businesses to input compliance definition directly into the program. This ensures that, depending on the industry, the product is able to meet the necessary standards. As an intelligent PLM platform, ENOVIA delivers full traceability of the product development process, from conception right through to manufacturing.

For those in charge of managing compliance, access to this data is incredibly valuable, for both auditing and providing evidence to regulatory panels. By acquiring industry-specific modules, businesses can rest assured that their compliance is being managed appropriately for their sector – avoiding nasty surprises or unsuccessful compliance.

For some industry sectors, failure to comply can cause momentous damage, beyond the obvious financial difficulties and time-to-market delays you might expect. For sensitive markets, like pharmaceutical or food and beverage, regulatory failure can wreak havoc on a brand’s reputation. What’s more, if the uncompliant product is subject to a recall, or the company is issued with a newsworthy penalty charge, the reputational damage can be irreparable.

PLM software is widely regarded as an effective tool to simplify product design. However, by providing a single source of truth for the entire development process, the potential of PLM surpasses this basic function. Using PLM for compliance equips manufacturers with complete data traceability, from the initial stages of design, right through to product launch. What’s more, industry-specific applications are dramatically simplifying the entire compliance process by guaranteeing businesses can meet particular regulations from the very outset.

Meeting regulatory standards is an undisputed obligation for product designers. However, as the strategic and product quality benefits of design-for-compliance become more apparent, it is likely that complying through PLM will become standard practice in the near future.

#PLM @designruleltd #PAuto #Pharma #Food @StoneJunctionPR

Two million mag meters plus…

02/05/2016

Endress+Hauser has produced over two million electromagnetic flowmeters since 1977. “That is more than any other manufacturer,” they claim. “This magic number stands for high-quality measuring technology and, above all, satisfied customers in all kinds of industries,” says Bernd-Josef Schäfer, Managing Director of Endress+Hauser Flowtec AG, the center of competence for flow measuring technology.

EH_MD_01The company’s success story as a manufacturer of electromagnetic flowmeters began in the middle of the 1970s. In order to enter the water and wastewater market which was emerging at that time, Endress+Hauser purchased the company Flowtec in Bern in 1977 and moved it to a new location in Reinach (Basel-Landschaft, Switzerland). This is where Endress+Hauser started to produce flowmeters with just three employees in former military barracks.

Work was done on an on-demand basis. “Whereas today,” says Bernd-Josef Schäfer, “our production spans six sites around the globe – in Switzerland, France, the USA, China, India, and Brazil – and boasts state-of-the-art logistics. This infrastructure is what has enabled us to produce two million electromagnetic flowmeters to date in accordance with required quality standards.”

To put this into context: These two million electromagnetic flowmeters could measure a volume corresponding to four times the flow rate of the Amazon. Each production site also features precise calibration facilities which are regularly checked by national accreditation bodies and which guarantee consistently high measuring quality for each individual device.

Constant innovation guarantees customer satisfaction
The company’s success, which spans almost 40 years, is due to many factors. In particular, its inventive talent has enabled Endress+Hauser to keep offering its customers new, groundbreaking devices capable of measuring all kinds of fluids, such as water, milk, acids, alkalis, or ore slurry, with the greatest accuracy.

With clever innovations such as the precision measurement of difficult fluids (Autozero, 1981), microprocessor control (Variomag, 1984), two-wire technology (Eximag, 1987), or the operating matrix (Tecmag, 1990), Endress+Hauser has always managed to stay one step ahead of the competition.


In 1993, all of these device variants were brought together to form a single product family under the name of “Proline”. Alongside this family, however, Endress+Hauser also produces flowmeters for very particular applications – for example, filling bottles at one-second intervals.

Looking to the future with Proline 
Since 1993, the Proline device family has undergone constant development toEH_MID_03 ensure that it meets the prevailing requirements in a wide range of industries. Following the second generation launched in 2000, the third and most recent Proline generation (2012) offers a multitude of unique functions and device properties.

This means that system operators will not only be able to retrieve measurement and diagnostic data via display, WLAN, web server, or fieldbus, but will also be able to monitor the process comprehensively and, if necessary, check the functioning of a flowmeter during operation.

Bernd-Josef Schäfer sees the future of Endress+Hauser optimistically: “Innovations such as these enable us to align our product portfolio consistently with the needs of every industry. We are looking ahead to our three-millionth electromagnetic flowmeter with great confidence.”

@Endress_Hauser #PAuto

Engineering is no longer a man’s world!

24/08/2015

Amy Wells, business development manager of specialist industrial connectors Electroustic compares unusual roles women have played in the past with the current struggle to get more women into science and engineering.

Amy Wells

Amy Wells

Women’s roles throughout history have varied dramatically from one civilisation to the next. For Britain, the sharply defined domestic role of women lay relatively untouched from the Middle Ages right through to the end of the Victorian era and beyond. But when we look further into history, gender roles were not so sharply defined.

Take the Viking era as an example. Historical attestations show that whilst it was rare for women to take part in warfare, the few that did take up arms were given legendary status as a shieldmaiden, a woman who had chosen to fight as a warrior amongst Viking men. Over 1250 years ago, these rare women were considered to be exceptional and highly respected figures. Through positive portrayal in modern film and literature, they continue to capture attention and admiration today. 

In recent years, there has been a plethora of media coverage and awareness campaigns to encourage and praise the small number of women working in the engineering industry. As a result, female engineers are finally starting to be held in high regard.

A number of recently launched initiatives such as the Women’s Engineering Society (WES) and the Women in Science and Engineering campaign (WISE) suggest that the engineering industry is successfully bridging the gender gap. Yet still, only six per cent of Britain’s engineering workforce is female.

There are a myriad of barriers preventing women from entering the engineering sector and inevitably, the gender stereotype remains a large factor. >From a young age, gender conditioning teaches us that hands-on, practical activities like LEGO and Meccano are not for girls. So it comes as no surprise that just 20 per cent of all A-level physics students are girls and that nearly half of UK state schools do not send a single girl on to study higher education physics at college or sixth form.

Perhaps more worryingly, even women who are currently working as engineers have acknowledged the gender gap associated with the industry. Results from the British Engineering and Manufacturing Census state that 75 per cent of the 300 female engineers surveyed still consider engineering to be a ‘male career’.

Although small in numbers, there is an army of proud and exceptional female engineers in Britain. In fact, 98 per cent of female engineers consider their job to be rewarding. These engineering women have built a strong network of support to praise and encourage women in industry. Launched in 2014, The National Women in Engineering Day (NWED) celebrates the achievements of female engineers across the country. Similarly, the Institute of Engineering and Technology (IET) presents the annual Young Woman Engineer Award to acknowledge the work of exceptional female engineers under 35.

Much like the legendary shieldmaidens of the Viking era, successful female engineers are held in high regard beside their male counterparts. Industry awards and increased media coverage have elevated the importance of the ‘female engineer’ to nationally recognised status, encouraging ambitious young women to conquer the engineering stereotype – perhaps with less pillaging and more programming.


Powering cathodic protection.

11/08/2015

Steve Hughes of REO UK explains how cathodic protection can adapt to become more controlled and efficient than ever before, in line with industry 4.0.

Often dubbed the inconspicuous killer, rust costs the global economy $2.2 trillion dollars every year. It accounts for anywhere between 3.5 to 4.5 per cent of gross domestic product (GDP) and is responsible for the structural failure of steel frames around the world. From bridges and cars, transcontinental and marine pipelines, to industrial machinery, tools and parts, rust contributes significantly to plant downtime the world over.

REO142Whether it’s steel pipelines or corrugated sheets in highly saline marine environments or reinforced concrete structures, impressed current cathodic protection (ICCP) is used widely to protect iron and steel structures against corrosion. Embedded anodes are connected to a control panel where the system produces an electrical current to suppress the naturally occurring electrochemical activity. In effect, the metal surface being protected becomes the cathode.

Often used over large geographic areas, cathodic protection systems have traditionally incurred high costs as engineers are required to perform extensive field surveys to ensure the system is working.

With the advent of concepts such as industry 4.0 and the Internet of Things (IoT) business leaders are increasingly pushing for increased transparency of business intelligence. Features such as remote monitoring, accurate control and measurement are now necessary to increase business process efficiencies in multinational organisations.

To overcome these challenges, REO has developed the REOTRON SMP-CP, a robust transformer rectifier power supply range specifically designed for cathodic protection applications. Built with the latest primary switch-mode technology, the REOTRON SMP-CP can be controlled from zero to maximum voltage or current.

This controllability is essential for cathodic protection applications. In newer installations that don’t require a high degree of electrical power availability, if a power supply isn’t driven to low voltages, over protection can lead to gas formation. This can contribute to surface bubbling and corrosion.

Voltage and current levels can be controlled through the range using an integrated keypad, external potentiometers, by using analogue control signals (0-10 VDC, 0-20 mA), RS232 serial communication and, most excitingly, by industrial fieldbus interfaces such as Profibus, CAN, DeviceNet or EtherCat. The enhanced fieldbus network control allows easy integration with existing supervisory control and data acquisition (SCADA) systems, opening up the use of remote monitoring, a vital feature especially for geographically dispersed operations.

Using the latest primary switch mode technology, the REOTRON SMP-CP units offer a high level of efficiency, easy maintenance and very low output voltage ripple packed into a lightweight and compact housing. Providing a 4-20 mA feedback, the unit achieves a proportional output for current and voltage. This makes metering easier and eliminates the need for current shunts.

They say rust is the longest battle but with accurate, highly controllable and remote monitoring of ICCP applications, engineers may one day win the war.


Monitoring nuclear waste legacy ponds!

22/04/2014

Following a rigorous assessment period, EXO water quality monitoring sondes from Xylem Analytics are being deployed in what is arguably one of the most hostile environments imaginable – nuclear waste legacy storage ponds at the Sellafield nuclear reprocessing site in Cumbriain the North West of England.

Background
One of the major challenges facing Sellafield Ltd is the safe decommissioning of the First Generation Magnox Storage Pond (FGMSP), a nuclear fuel storage facility that was originally built in the 1950s and 1960s as part of Britain’s expanding nuclear programme to receive and store, cool irradiated Magnox fuel prior to reprocessing.

In the 1970s a lengthy shutdown at the Magnox Reprocessing Plant, combined with increased throughput of fuel due to electricity shortages, spent fuel to be stored in the pond for longer than the designed period which led to increased fuel corrosion and radiation levels.

Over the years the pond has accumulated significant quantities of waste materials, sludges from corrosion of fuel cladding, skips of fuel, and fuel fragments and other debris which has blown into the pond. Standing above ground, this 5m deep open pond holding some 14,000 cubic metres of contaminated water (approximately the size of two Olympic swimming pools) is considered a decommissioning priority. To assist with future retrievals, a detailed knowledge of the facility’s inventory through visual inspection of the pond is needed.

Despite high levels of radioactivity, this open pond appears to intermittently bloom with a range of microorganisms that cloud the water, reducing visibility and hampering inspection and retrieval operations.

Sellafield Ltd is the company responsible for safely delivering decommissioning, reprocessing and nuclear waste management activities on behalf of the Nuclear Decommissioning Authority (NDA), and a project team led by Xavier Poteau has specific responsibility for transferring monitoring technologies to the FGMSP pond.

FGMSP Pond (Image supplied courtesy of Sellafield Ltd)

Water passing through the pond reaches the Sellafield Ion Exchange Effluent Plant (SIXEP) which removes radioactivity from liquid feeds from a number of plants across the Sellafield site. The plant settles out and filters solids using a carbonation process to neutralise the alkaline pond water and then employs ion exchange to remove radionuclides.

Why monitor?
Water samples are routinely collected from the pond for laboratory analysis, and analytical data is reported to the Environment Agency and the NDA. In addition to this regulatory requirement, water quality data is also required to inform efficient operation of SIXEP and to ensure that legacy fuel is stored in optimal conditions. For example, the water is caustic dosed to maintain a pH of around 11.5 which reduces the speed of nuclear fuel degradation.

Water monitoring challenges

Preparing to test the water!

Preparing to test the water! (Image supplied courtesy of Sellafield Ltd)

As a result of physical restrictions, it has only been possible to take water samples from specific locations around the edge of the pond and, being radioactive, routine samples have to be limited to about 100ml to be within laboratories guidelines. Sampling is also an arduous, time-consuming process; two people have to be involved and each sampler has to wear a pvc suit and facemask, two pairs of pvc waterproof gloves and a pair of Kevlar gloves to ensure that the gloves are not accidentally punctured. The samplers are also only allowed to be close to the pond for a limited time.

Instrumentation might appear to be the obvious solution, but again, there are several challenges, not least of which is that gamma spectrum analysis has to be conducted on a sample in a lab. In addition, electrical instruments often fail in a radioactive environment, so the general assumption is that they will do so, unless proven otherwise. Continuous monitoring probes, similar to those employed by the water industry, are not feasible because of the wiring that would be required. However, portable instruments offer the potential to reduce the volume and frequency of water sampling.

Trials with EXO sondes
The EXO2 sondes are multiparameter 6-port water quality monitors that have been developed for remote, long-term monitoring applications. Employed globally by regulatory authorities, researchers, industrial companies and those responsible for the protection of water resources, the EXO sondes are the result of many years’ of development and feedback from thousands of users from all over the world. As a result, these instruments are lightweight and rugged, with internal batteries and datalogging capability for long-term monitoring applications. The EXO sondes operate on extremely low power and incorporate a range of features that minimise maintenance requirements and avoid biofouling. For example: wet-mateable connectors resist corrosion; components are isolated to prevent short-circuits; welded housings and double o-rings prevent leaks, and high-impact plastic and titanium resists impact damage.

The ‘smart’ EXO sensors are easily interchangeable and users are able to select the sensors that best meet their needs. The FGMSP project team, for example, uses sensors for pH, temperature, conductivity, turbidity, fDOM (Fluorescent Dissolved Organic Matter – a surrogate for Coloured DOM), Blue-green Algae and Chlorophyll.

Initially, the FGMSP project team trialled an extended deployment version of the YSI 6600 multiparameter water quality monitoring sonde – a predecessor of the EXO. “This enabled us to assess the quality of the YSI sensors and demonstrate that they were able to operate well in a radioactive environment,” comments Technical Specialist Marcus Coupe, adding: “The launch of the EXO was of great interest to us because, with Bluetooth communications and smart sensors that retain their calibration data, the EXO offered an opportunity to dramatically reduce time spent at the pond.

“The snap-on probes are calibrated in the laboratory and can then be quickly and simply swapped with those that have been deployed on an EXO sonde. This means that the main part of the sonde can be left onsite while the sensors are quickly swapped, and the Bluetooth comms enable us to collect 18,600 sets of data in less than 20 minutes.”

Commenting further on the success of the EXO trials, Xavier Poteau says: “It has been common experience in the nuclear industry to have to apply significant adaptations to electrical equipment, so that it is able to function correctly in a radioactive environment, and this can incur a heavy cost and time penalty. However, the EXO sondes have performed very well ‘off the shelf’ which is a sign of good design.”

ROV with EXO probe

ROV with EXO probe (Image supplied courtesy of Sellafield Ltd)

As part of their work with the EXO sondes, the FGMSP project team has deployed an EXO sonde with a submersible remotely operated vehicle (ROV). This enabled the team to monitor water quality at previously unachievable locations. “Any loss of visibility in the pond can potentially cause a significant risk to operations within the legacy ponds, as well as potentially slowing down future retrievals, so the ability to deploy an EXO with a ROV offers a valuable insight into understanding the challenge, and moves us from single point sampling to a more 3D-like data stream,” adds Marcus Coupe.

Looking forward
Neill Cornwell from Xylem Analytics has been involved with the trials at Sellafield from the start. He says: “A lot of hard work has gone into the process of demonstrating EXO’s suitability for deployment in the nuclear sector; not only has the equipment had to perform well in challenging conditions, but we have also had to demonstrate a high level of technical and service support.

“Naturally, we are very pleased that the sondes have performed so well, and further instruments are now being deployed in other applications at the Sellafield site. For example, a slimmer version of the EXO, the EXO1, is being used to monitor the effluent distribution tanks because the only access is via narrow pipes and the EXO1 is ideal because its outer diameter is just 1.85 inches.”

The data from the FGMSP sondes compare favourably with the results of laboratory analysis, so Xavier Poteau believes “a high level of confidence is being established in the EXO data and this means that we will be able to reduce the amount of sampling that we undertake, which will save a great deal of time, hassle and money.

“I strongly believe that our experience could be beneficial to the wider audience as well as the nuclear industry.”

EXO2_titanium_bulkhead

EXO2 Titanium Bulkhead


“Breaking new ground with a world first for level detection technology” #PAuto

07/02/2014

VEGA has re-engineered this technology, bringing it up to date and developing a sensor for extreme situations: the vibrating level switch VEGASWING 66. Why these new sensors ‘feel comfortable’ in temperatures up to 450 °C and pressures up to 160 bar is explained to us in an interview with Holger Sack, Head of Product Management at VEGA.

DE-Sack-HolgerHolger Sack is head of product management at VEGA Grieshaber KG in Schiltach. After completing his engineering studies, he moved from Berlin to the Black Forest in 1991 to collaborate in the development of sensors for non-contact level measurement at VEGA. In 2000 he became product manager for radar, since 2009 he has been head of product management. His areas of responsibility, shared by his team of 11 product managers, are supporting product development and overseeing the worldwide marketing of our instrumentation.
The term ‘limit switch’ appears rather infrequently in technical texts. Even my Google search was not very successful for that term. Why?

Holger Sack: Today, the old, ‘tried and tested’ analogue limit switches with potentiometer adjustment etc. are gradually being replaced by digital technology. I think that’s why these devices are now more commonly called ‘point level sensors.’ Even in the English language, you’ll more often hear people talking about ‘point level measurement’, i.e. detection of a substance at a specific point. I suppose ‘point level’ has prevailed over ‘limit level’ for that reason. We’ve found that point level measurement is indeed very closely related to level measurement.

That is very likely the reason why ‘level’ is used in some descriptions as a synonym for ‘point level.’ To what extent are the two technologies different, and what are their similarities?
Holger Sack: Level measurement is used to describe continuous measurement of a changing level, whereas point level is used to indicate a discrete condition, i.e. the existence of the level at a certain point. To clarify, ‘Level’ means the continuous measurement of contents from empty to full, with the values being output in percent, volume or other units of contents. ‘Point level’, on the other hand, means a discrete on/off signal given when a product has reached a significant level in a vessel.

Continuous or discrete – can the two areas of applications be clearly separated from one another?

Holger Sack: No, they can’t. You can find both level and point level sensors everywhere. Even combined in one application, depending on the customer requirement. Usually, when both sensor types are installed, it is to increase safety – for example in the chemical industry.

Does the simpler technology behind point level switches mean that they are cheaper than continuous level sensors?

Holger Sack: Roughly speaking, yes. Because, continuous level sensors are more complex in structure and sometimes also in terms of technology. But this need not always be the case. You see, with regard to the process, point level sensors have to meet the same requirements as continuous level sensors. Level switches just carry out a ‘simpler evaluation’ of level data. That’s why the price of a level switch, or point level sensor, is usually less than that of a continuous level sensor by a certain factor.

In point level detection, a switching command starts or stops the filling equipment. How do you monitor the process, i.e. ensure that the sensing element and the electronics are working properly?

Holger Sack: On the one hand, the individual sensor has to be considered, and on the other, the entire measurement chain. In the modern sensors, microprocessor technology enables numerous functions that monitor the electronics as well as the sensing element during operation. A high percentage of faults in the electronics as well as in the sensing element, such as build-up or corrosion, can be detected and reported. Looking at the entire measurement chain, we see that information on tank contents is forwarded to the control system or special actuators through cables or bus systems. These systems are responsible for ensuring that valves, pumps, etc. operate at the right time. Until now, all devices in a system were analysed individually from safety-engineering standpoint. But this has changed. Today, engineers look at the entire measurement chain, that is, from the sensor to the transmission of measured values to the actuating components (valves, pumps, etc.). This ultimately ensures that the switch-off mechanism in its entirety works, preventing overfilling or dry running of pumps.

When it comes to safety, a lot has been done in recent years. Has level switch technology also been made better, safer?

Holger Sack: As I said earlier, the basic technology is very old. People built level switches long before they started building continuous level measuring instruments. For that reason there are still a lot of old but proven technologies in service, such as floats or paddle switches. The capacitive measuring principle is also a very old, tried-and-true measuring method, albeit with a few limitations when compared to the vibration principle. Next to microwave/radar, vibration is currently the most universal measuring principle that we offer. We at VEGA have been focusing on electronic measuring systems for years, because they have significant advantages in terms of maintenance and means Life Cycle Costs. That’s why, although they are also a little more expensive to produce and to buy, we believe that this extra outlay pays off over a service life of 15 years or more.

Does this mean that your new vibrating level switch VEGASWING 66 is just old, well-known technology in a new guise?

Holger Sack: No, not in this regard. Here we are breaking new ground with our new, patented technology. The backstory is that this instrument can be used in temperature and pressure ranges where previously only a few technologies could be deployed, and certainly not the tuning fork measuring principle. The basis of this technology is a tuning fork that is electrically excited and made to vibrate over a few micrometres range. Until now, it was not possible to use vibration technology in temperatures above 250 °C. With our VEGASWING 66, applications up to 450 °C are now possible; not only that, it is also capable of temperatures as low as -195 °C. We are the only company that can offer this technology for use in such temperatures and in pressures from -1 to 160 bar.

Vegaswing 66

Vegaswing 66

How did you make it possible to use the switch in the extreme temperatures and pressures commonly found in the process industry?

Holger Sack: For one thing, we replaced the previously used piezoelectric drive with a special solenoid that we developed ourselves. This solenoid now drives the tuning fork and is able to withstand the high temperatures. Another point is, we now use ceramic materials and have designed the electrical connections made so secure that they operate reliably even at 450° C. And last but not least, we achieved the high pressure resistance through the mechanical stability of robust materials that withstand pressures up to 160 bar.

For point level detection, the user can choose between different measuring principles. How can the customer be sure he gets the right one, the one he really needs for his application?

Holger Sack: It is always important that the customer tells us in advance what his requirements and application conditions are. Because, with this information we can recommend the right measuring principle. However, we are confronted again and again with new challenges that challenge the limits of our technology – because our customers are not standing still, they’re continuously developing their processes. In most cases it’s about new combinations of pressure, temperature and chemicals. That’s why we’re constantly developing and improving our products and measuring principles, optimising them to meet the latest process requirements.

Current problems are, for example, difficult product properties or foaming. To what extent do these factors influence the quality of the measuring results?

Holger Sack: On VEGASWING 66, for example, we can detect build-up, and we can also detect whether the tuning fork is corroded or broken. This is possible both due to the measuring principle itself, as well as monitoring of the natural resonant frequency. Build up changes the amplitude of the oscillation, which allows us to use the available processor technology to electronically evaluate this change and notify the customer that a problem exists. Such ‘anticipatory’ diagnostic capabilities are being demanded by customers more and more.

In addition to diagnostic capabilities and safety, users nowadays are calling for the simplest possible instrument handling. Do your level switches also follow the motto of the plics platform, ‘simpler is better’?

Holger Sack: Absolutely. The whole idea of the plics® concept is to make level and pressure measurement as simple as possible for each and every customer. The customer doesn’t have to be an instrument engineer to be able to use our instruments. His job is to control the process and keep it running smoothly – by asking questions about his process and its requirements, we are able to recommend the instrument that is best suited for the application. VEGASWING 66 is also designed according to the modular instrument platform plics. This means that the customer can combine different components as required. But plics is more than that: it’s a system designed to make handling easier for the customer throughout the entire life cycle of the instrument.

Another important point is delivery time. We deliver 80 percent of our products are despatched within two to four working days – previously it took 6 to 10 weeks. The installation and setup are also greatly simplified by the modular system because, if the customer already knows how to operate one VEGA instrument, he can operate all the others just as well. Installation, adjustment and connection are completely standardized, this applies to 80 percent of our instruments. If servicing is required, our employees look after customers personally and make sure the job gets done quickly and without any fuss – because, every servicing event also provides us with valuable feedback on the product and a chance to improve it and ourselves.