Soil carbon flux research!

21/11/2018
Measuring soil carbon flux gives an insight into the health of forest ecosystems and provides feedback on the effects of global warming. This article, from Edinburgh Instruments, outlines how soil CO2 efflux is determined and the applications of soil carbon flux research.

Soil is an important part of the Earth’s carbon cycle.
Pic: pixabay.com/Picography

The Earth’s carbon cycle maintains a steady balance of carbon in the atmosphere that supports plant and animal life. In recent years, concerns about the increasing levels of CO2 in the atmosphere, indicating a problem in Earth’s carbon cycle, has been a prominent global issue.1,2

As a part of a stable carbon cycle, carbon is exchanged between carbon pools including the atmosphere, the ocean, the land and living things in a process known as carbon flux. Carbon exchange typically takes place as a result of a variety of natural processes including respiration, photosynthesis, and decomposition.

Since the industrial age, humans have begun to contribute to carbon exchange with activities such as fuel burning, and chemical processes, which are believed to be responsible for increasing atmospheric CO2 concentrations and increasing global temperatures.1-3

Soil carbon flux provides feedback on environmental conditions
Soil is a vital aspect of the Earth’s carbon cycle, containing almost three times more carbon than the Earth’s atmosphere. Carbon is present in soil as ‘solid organic carbon’ including decomposing plant and animal matter. Over time, microbial decomposition of the organic components of soil releases carbon into the atmosphere as CO2.4,5

The amount of carbon present in soil affects soil fertility, plant growth, microbial activity, and water quality. Studying the carbon flux of soil gives an insight into an ecosystem as a whole and specific information about microbial activity and plant growth.4-6

Soil carbon flux can also help us to understand and predict the effects of global warming. As global temperatures increase, is it expected that microbial activity will also increase, resulting in faster plant decomposition and increased CO2 efflux into the atmosphere.5,6

Measuring soil CO2 efflux
Determining soil-surface CO2 efflux can be challenging. Researchers commonly employ a chamber combined with CO2 concentration measurements to determine CO2 efflux. A variety of chambers have been designed for such research, some of which are commercially available.7-10

Closed-chamber systems typically pump air through a gas analyzer, which measures CO2 concentration, before returning the air to the chamber. Soil CO2 efflux is then estimated from the rate of increase of CO2 concentration in the chamber.

Open-chambers pump ambient air into the chamber and measure the change in CO2concentration between the air entering the chamber and the air leaving the chamber to determine the soil CO2 efflux.

Of the two chamber types, open chambers are considered more accurate. Closed chambers tend to underestimate CO2 efflux as increased CO2 concentrations in the chamber cause less CO2 to diffuse out of the soil while the chamber is in place.10,11.

Often, CO2 concentrations in chambers are measured periodically and then extrapolated to give an estimation of CO2 efflux. This method can be inaccurate because CO2 efflux can vary significantly between measurements with changes in environmental conditions.

A further limitation of using chambers for CO2 efflux measurements is that chambers typically only provide measurements in one location, while CO2 efflux has been found to vary widely even in relatively homogeneous environments. The overall result is CO2 efflux data with limited temporal and spatial resolution, that does not reflect the environmental situation as a whole.10,12,13

Naishen Liang

A group of researchers from the National Institute for Environmental Studies (Japan) led by Naishen Liang has designed an automated, multi-chamber chamber system for measuring soil-surface CO2 efflux.

As CO2 concentrations are measured automatically using an infrared gas sensor, COefflux can be determined accurately throughout the experiment. The improved temporal resolution, combined with increased spatial detail resulting from the use of multiple chambers gives a better overview of how CO2 efflux varies with time, location, and environmental conditions within an ecosystem.10

Liang and his team have applied his method to gather information about a range of forest ecosystems. Their automated chambers have been used in a variety of forest locations combined with heat lamps to provide high-resolution, long-term data about the effects of warming on microbial activity and CO2 efflux.

Liang’s research has shown that soil temperatures have a significant effect on COefflux in a wide range of forest environments, information that is vital for understanding how global warming will affect forest ecosystems and the Earth’s carbon cycle as a whole.14-17

All chamber systems for determining CO2 efflux rely on accurate CO2 concentration analysis. Infrared gas analyzers are the most widely used method of instrumentation for determining CO2 concentrations in soil CO2 efflux measurement chambers.8,10,18

Infrared gas sensors, such as gascard sensors from Edinburgh Sensors, are well suited to providing CO2 concentration measurements in soil chambers, and are the sensors of choice used by Liang and his team.

The gascard sensors are robust, low-maintenance, and easy to use compared with other sensors. They provide rapid easy-to-interpret results and can be supplied as either complete boxed sensors (the Boxed Gascard) or as individual sensors (the Gascard NG) for easy integration into automated chambers.19,20


Notes, References and further reading
1. ‘The Carbon Cycle’
2. ‘Global Carbon Cycle and Climate Change’ — Kondratyev KY, Krapivin VF, Varotsos CA, Springer Science & Business Media, 2003.
3. ‘Land Use and the Carbon Cycle: Advances in Integrated Science, Management, and Policy’ — Brown DG, Robinson DT, French NHF, Reed BC, Cambridge University Press, 2013.
4. ‘Soil organic matter and soil function – Review of the literature and underlying data’ — Murphy BW, Department of Environment and Energy, 2014
5. ‘The whole-soil carbon flux in response to warming’ — Hicks Pries CE, Castanha C, Porras RC, Torn MS, Science, 2017.
6. ‘Temperature-associated increases in the global soil respiration record’ — Bond-Lamberty B, Thomson A, Nature, 2010.
7. ‘Measuring Emissions from Soil and Water’ — Matson PA, Harriss RC, Blackwell Scientific Publications, 1995.
8. ‘Minimize artifacts and biases in chamber-based measurements of soil respiration’ — Davidson EA, Savage K, Verchot LV, Navarro R, Agricultural and Forest Meteorology, 2002.
9. ‘Methods of Soil Analysis: Part 1. Physical Methods, 3rd Edition’ — Dane JH, Topp GC, Soil Science Society of America, 2002.
10. ‘A multichannel automated chamber system for continuous measurement of forest soil CO2 efflux’ — Liang N, Inoue G, Fujinuma Y, Tree Physiology, 2003.
11. ‘A comparion of six methods for measuring soil-surface carbon dioxide fluxes’ — Norman JM, Kucharik CJ, Gower ST, Baldocchi DD, Grill PM, Rayment M, Savage K, Striegl RG, Journal of Geophysical Research, 1997.
12. ‘An automated chamber system for measuring soil respiration’ — McGinn SM, Akinremi OO, McLean HDJ, Ellert B, Canadian Journal of Soil Science, 1998.
13. ‘Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest’ — Rayment MB, Jarvis PG, Soil Biology & Biochemistry, 2000.
14. ‘High-resolution data on the impact of warming on soil CO2 efflux from an Asian monsoon forest’ — Liang N, Teramoto M, Takagi M, Zeng J, Scientific Data, 2017.
15. ‘Long‐Term Stimulatory Warming Effect on Soil Heterotrophic Respiration in a Cool‐Temperate Broad‐Leaved Deciduous Forest in Northern Japan’ —Teramoto M, Liang N, Ishida S, Zeng J, Journal of Geophysical Research: Biogeoscience, 2018.
16. ‘Sustained large stimulation of soil heterotrophic respiration rate and its temperature sensitivity by soil warming in a cool-temperate forested peatland’ — Aguilos M, Takagi K, Liang N, Watanabe Y, Teramoto M, Goto S, Takahashi Y, Mukai H, Sasa K, Tellus Series B : Chemical and Physical Meteorology, 2013.
17. ‘Liang Automatic Chamber (LAC) Network
18. ‘Interpreting, measuring, and modeling soil respiration’ — Ryan MG, Law BE, Biogeochemistry, 2005.
19. ‘Boxed Gascard’
20. ‘Gascard NG’

@edinsensors #Environment #NIESJp

Power take-off torque monitoring.

07/08/2018
AIM – Precisely & Quickly Monitor Power Take-Off Torque on A Wave Energy Converter

Challenge
As part of a project funded by Wave Energy Scotland, 4c Engineering needed to test various configurations of the SeaPower Platform, a Wave Energy Converter (WEC), to determine the effects on power capture.   To do this they needed a reliable and accurate way of measuring power take-off (PTO) torque, forces, positions and pressures of the waves on the SeaPower Platform.

Why? Establishing the most efficient design with the highest wave power generation, will make it a more cost-efficient form of wave energy.

The SeaPower Platform extracts energy from deep water ocean waves by reacting to long prevailing wavelengths in high resource sites.

Solution – Accurate DTD-P Parallel Shaft Reaction Torque Transducer
“We chose the DTD-P torque transducer for its high accuracy and compact size which we needed for tank testing the SeaPower Platform,” explains Andy Hall, Director at 4c Engineering.

  • Designed for In-Line Static or Semi-Rotary Torque Measurement
  • Capacities: 0-10Nm to 0-10kNm
  • High Accuracy – Ideal for Calibration, Development and Testing Applications
  • Accuracy: <±0.15% / Full Scale Output
  • Customised Capacities, Shaft and Configuration Options Available
  • IP67 Waterproof and IP68 Fully Submersible Versions Available

Complete Torque Monitoring System
Applied Measurements Ltd provided 4c Engineering with a DTD-P 100Nm parallel shaft torque sensor fitted with an ICA4H miniature load cell amplifier, calibrated to UKAS traceable standards and sealed to IP68 to allow complete submersion. This complete torque measuring system enabled their engineers to reliably and accurately monitor the torque applied by the WEC as it responded to waves in the test tank.

Save on Installation Time
The DTD-P torque transducer has keyed parallel shaft connections for in-line static or semi-rotary torque measurement in capacities from 0-10Nm up to 0-10kNm (custom capacities readily available). This version was fitted with a flying lead, however versions with an integral bayonet lock military connector are also available which promise simple and easy connection.

Guaranteed High Accuracy
The DTD-P torque transducer is highly accurate to better than ±0.15% (typically ±0.05%) of the full scale output, making it ideal for this high precision development and testing application. Additional applications include the testing of electrical motors, hydraulic pumps, automotive transmissions, steering systems and aircraft actuators.

Need a Specific Design?
The DTD-P torque transducer can be customised with bespoke shaft, configuration options and capacities (to 50kNm+) specific to your application. For 4c Engineering we customised the design of the DTD-P torque transducer to IP68 submersible for continuous use underwater to 1m, which was essential for use in the wave test tank.

High Stability, Fast Response, ICA4H Miniature Load Cell Amplifier
“The high speed, reliability and clean output of the ICA4H miniature amplifier enabled the data to be analysed immediately after each test.” says Andy Hall.

  • Very Compact 19mm Diameter
  • Low Current Consumption
  • High Speed 1kHz Bandwidth (max.)
  • 4-20mA (3-wire) Output (10 to 30Vdc supply)

Very Compact
To deliver a conditioned load cell output signal we supplied the DTD-P torque transducer with an ICA4H high performance miniature load cell amplifier. The ICA miniature load cell amplifiers are very compact at only 19mm in diameter allowing them to fit inside the body of most load cells. In this application the ICA4H was supplied in a gel filled IP68 immersion protected compact enclosure (see image above) along with 10 metres of cable making it suitable for this underwater application.

With High Speed Response
The engineers at 4c Engineering needed to have a quick and reliable way to process the power take-off torque data from the tests, to determine the power capture and effects of the control settings before running the next test. The ICA4H miniature load cell amplifier was chosen not only for its high stability and compact size but also for its 1000Hz fast response.


A sea platform off the Galway (Ireland) Coast – not far from the Read-out offices.

@AppMeas @4c_Eng #power #PAuto


Keep making the tablets!

08/05/2018
This article shows how valuable manufacturing production line downtime in the pharmaceutical industry can be reduced by ensuring predictive maintenance of tablet making machinery using Harting’s MICA industrial computing platform.

Introduction
Harting recently challenged postgraduate students from the Centre for Doctoral Training in Embedded Intelligence at Loughborough University to investigate practical application solutions where MICA – the company’s innovative open platform based ruggedised industrial edge computing device – could be applied to the benefit of manufacturing. Simple seamless integration within existing established production processes was the target, based on the concept of machine predictive maintenance.

The key objective was to achieve immediate productivity improvements and return on investment (RoI), thus satisfying the increasing trend for Integrated Industry 4.0 implementation on the factory floor. One such proposal was suggested for volume manufacturers in the pharmaceutical industry: in particular, those companies manufacturing tablets using automated presses and punch tools.

Data from these machines can be collected using passive UHF RFID “on metal” transponders which can be retrofitted to existing tablet press machines and mounted on the actual press-die/punch tools. The RFID read and write tags can record the pressing process, i.e. the number of operations performed by a particular press die, plus any other critical operating sensor-monitored conditions. The system can then review that data against expected normal end-of-life projected limits set for that die.

Such data can be managed and processed through Harting’s MICA edge computing device, which can then automatically alert the machine operator that maintenance needs to take place to replace a particular die-set before it creates a catastrophic tool failure condition and breakdown in the production line – which unfortunately is still quite a common occurrence.

Open system software
MICA is easy to use, with a touch-optimised interface for end users and administrators implemented entirely in HTML5 and JavaScript. It provides an open system software environment that allows developers from both the production and IT worlds to quickly implement and customise projects without any special tools. Applications are executed in their own Linux-based containers, which contain all the necessary libraries and drivers. This means that package dependencies and incompatibilities are eliminated. In addition, such containers run in individual “sandboxes” which isolate and secure different applications from one another with their own separate log-in and IP addresses. As a result, there should be no concerns over data security when MICA is allowed access to a higher-level production ERP network.

MICA is already offered with a number of containers such as Java, Python C/C++, OPC-UA, databases and web toolkits, all available on free download via the HARTING web site. As a result, users should be able to download links to the operating software system compatible with an existing machine, enabling full 2-way communication with the MICA device. Relaying such manufacturing information, which can comprise many gigabytes of data in the course of a day, directly to the ERP would normally overwhelm both the network and the ERP. With the MICA, this data stream is buffered directly onto the machine and can be reduced to just essential business-critical data using proven tools from the IT world.

The resultant improvements in productivity include:

– Less downtime reduces the amount of money lost during unforeseen maintenance of damaged punch tools.
– Individual punch identification will help in removing a specific punch, once it has reached its pre-set operational frequency working limit.
– A digital log of each punch and the number of tablets that it has produced is recorded. This provides vital information for GMP (Good Manufacturing Practice) regulators such as the MHRA (Medicines & Healthcare products Regulatory Agency) or the FDA (Food & Drug Administration).

A further benefit is that MICA is very compact, with DIN rail mounting fixing options that allow it to be easily accommodated inside a machine’s main control cabinet.

@HARTING #PAuto #Pharma @CDT_EI

Researchers investigate ultra-low Mediterranean nutrient levels.

25/04/2018

Researchers at Haifa University’s Marine Biological Station in Israel are exploiting the ultra-low detection limits of advanced laboratory equipment to measure extremely low nutrient concentrations in marine water.

H.Nativ – Morris Kahn Marine Research Station

The University’s Prof. M. D. Krom says: “We work in the Eastern Mediterranean which has the lowest regional concentration of dissolved nutrients anywhere in the global ocean. We therefore utilize an automated segmented flow analyzer from SEAL Analytical, which has been specially adapted to accommodate ultra-low measurements.”

The SEAL AutoAnalyzer 3 (AA3) is a 4 channel system, measuring Phosphate with a long flow cell which has a detection limit of 2 nM. Ammonia is measured using a JASCO fluorometer with a similar ultra-low detection limit, and Silicate, which has a higher concentration, is measured using SEAL’s high resolution colorimetric technology.

The measurement data are being used to determine the season nutrient cycling in the system, which will then be used to help understand the nature of the food web and the effects of global environmental and climate change.

Low nutrient levels in the Mediterranean
The eastern Mediterranean Sea (EMS) has an almost unique water circulation. The surface waters (0-200m) flow into the Mediterranean through the Straits of Gibraltar and from there into the EMS at the Straits of Sicily. As the water flows towards the east it becomes increasingly saline and hence denser. When it reaches the coast of Turkey in winter it also cools and then flows back out of the Mediterranean under the surface waters to Sicily, and then eventually through the Straits of Gibraltar to the North Atlantic. This outflowing layer exists between 200m and 500m depth.

Phytoplankton grow in the surface waters (0-200m) because that is the only layer with sufficient light. This layer receives nutrients from the adjacent land, from rivers and wastewater discharges, and also from aerosols in the atmosphere. These nutrients are utilized by the plankton as they photosynthesize. When the plants die (or are eaten) their remains drop into the lower layer and are jetted out of the EMS. Because the water flows are so fast (it takes just 8 years for the entire surface layers of the EMS to be replaced), these nutrient rich intermediate waters rapidly expel nutrients from the basin. The result is very low nutrient concentrations and very low numbers of phytoplankton – some of the lowest values anywhere in the world. Prof. Krom says: “The maximum levels of nutrients measured in the EMS are 250 nM phosphate, 6 uM nitrate and 6-12 uM silicate. Ammonia is often in the low nanomolar range. By contrast, in the North Atlantic, values are 1000 nM phosphate, 16 uM nitrate and 20 uM silicate, and the levels in the North Pacific are even higher.”

The value of data
The low levels of plankton caused by low nutrient levels, result in a low biomass of fish. Nevertheless, coastal areas generally support more fish than offshore, so the research will seek to quantify and understand the nutrient cycle in the coastal regions, which is poorly understood at present. “We plan to develop understandings which will inform stakeholders such as government. For example, there is a discussion about the potential for fish farms off the Israeli coast, so our work will enable science-based decisions regarding the quantity of fish that the system can support.”

To-date, three data sets have been taken from the EMS, and the first publishable paper is in the process of being prepared.

Choosing the right analyzer
Prof. Krom says that his first ‘real’ job was working for the (then) Water Research Centre at Medmenham in Britain, where he was involved in the development of chemical applications for the Technicon AA-II autoanalyzers, which included going on secondment to Technicon for several months. SEAL Analytical now own and manufacture the AutoAnalyzer brand of Continuous Segmented Flow Analyzers, so his career has been connected with autoanalyzers for decades. For example his is Professor (Emeritus) at the University of Leeds (GB), where, again, he worked with SEAL autanalyzers. An AA3 instrument was employed at Leeds in a project to investigate the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans.

Explaining the reasoning behind the purchase of a new AA3 at Haifa University, Prof. Krom says: “During a research cruise, it is necessary to analyse samples within a day to avoid changes in concentration due to preservation procedures.

“Typically we analyse 50-80 samples per day, so it is useful to useful to be able to analyze large numbers of samples automatically. However, the main reasons for choosing the SEAL AA3 were the precision, accuracy and low limits of detection that it provides.”

Commenting on this application for SEAL’s analyzers, company President Stuart Smith says: “Many of our customers analyze nutrient levels in freshwater and marine water samples, where high levels of nutrients are a concern because of increasing levels of algal blooms and eutrophication. However, Prof. Krom’s work is very interesting because, in contrast, he is looking at extremely low levels, so it is very gratifying that our instruments are able to operate at both ends of the nutrient concentration spectrum.

Bibliography
• Powley, H.R., Krom, M.D., and Van Cappellen, P. (2017) Understanding the unique biogeochemistry of the Mediterranean Sea: Insights from a coupled phosphorus and nitrogen model. Global Biogeochemical Cycles, 11; 1010-1031. DOI 10.1002/2017GB005648.

• Stockdale, A. Krom, M. D., Mortimer, R.J.G., Benning, L.G., Carslaw, K.S., Herbert, R.J., Shi, Z., Myriokefalitakis, S., Kanakidou, M., and Nenes, A., (2016) Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. PNAS vol. 113 no. 51

#SealAnal #Marine @_Enviro_News

Connecting, communicating and creating in Netherlands.

14/03/2018

The country of the Netherlands is where the Rhine enters the sea. It is a country which has physically built itself out of the inhospitable North Sea. Often called Holland – which is the name of one (actually two) of its provinces – it even more confusingly for the English speaking world inhabited by the Dutch speaking Dutch. If you really want to know more about Holl.. er sorry, The Netherlands watch the video at the bottom of this piece.

Although not officially the capital of The Netherlands, Amsterdam is, The Hague is the seat of Government and official residence of the King. It was selected by the Emerson User Group as the venue for their European, Middle East & African assembly, refereed to as #EMrex on twitter. These assemblies – can we say celebrations? – occur every two years. The last was held in Brussels, the capital of the neighbouring Kingdom of the Belgians and of the European Union. An sccount of happenings there are in our postin “All change at Brussel Centraal.” (18/4/2016)

Lots of pictures from the event!

The size of this event was in marked contrast to the Brussels meet which was overshadowed by the terrible terrorist attacks in that city only three weeks earlier which presented transport difficulties. This time there were over one thousand six hundred delegates filling the huge hall of the Hague Convention Centre.

Another difference referred to in many of the discussions both formal and informal were the two great uncertainties effecting all businesses and industries – the possibility of a trade war with the USA under its current administration and nearer home the aftermath of the BREXIT decision – the exit of the British from the largest economic bloc on the planet. Many developments have been put on the long finger pending clarification on these issues.

Mary Peterson welcomes delegates

Why are we here?
This event continued in the vein of previous meetings. The emphasis continuing to move to perhaps a more philosophical and certainly a more holistic view of how the automation sector can help industry. This was made clear in the introductory welcome by Novartis’s Mary Peterson, Chair of the User Group, when she posed the question, “Why are we here?”

“This is a conference for users by users.” she said. It is a place to discuss users’ practical experiences; continuing our profissional development; learning best practice and proven solutions and technology roadmaps. But above all it presented an opportunity to connect with industry leaders, users and of course Emerson experts.

For other or more detailed information on happenings and/or offerings revealed at this event.
News Releases

and on Twitter #EmrEx

The emphasis is on the totality of services and packages not on individual boxes. Emerson’s European President Roel Van Doren was next to address the assembly. We should know our plant but be unafraid to use expertese and knowledge to keep it fit for purpose. Monitor the plant constantly, analyse what is required and then act. This means seeing how the latest advances might improve production. This means harnessing the “new technologies.” In passing he drew our attention that Emerson had been recognised earlier this year as ‘Industrial IoT Company of the Year’ by IoT Breakthrough.

The path is digital
A very striking presentation was given by Dirk Reineld, Senior VP Indirect Procurement with BASF. He brought us to the top of Rome’s Via de Conciliazione on 19th April 2005. We saw the huge crowd looking towards the centre balcony as the election of a new pope was announced. He then moved forward to the 13th March in 2013, the same place but what a difference in such a short time. This time it seemed that everybody had a mobile phone held to take photographs of the announcement of the election of Francis. All we could see was a sea of little screens. He used this to emphasize a point “We are underestimating what is happening & its speed.” This is not helped by a natural conservatism among plant engineers. Change is happening and we either embrace it or get left behind. It is becoming more and more clear that in front of us “the path is digital!” He presented some useful examples of digitalisation and collaboration at BASF.

PRESENTATIONS

Registered delegates have access to slides from the main presentation programme. These slides are available for download via the Emerson Exchange 365 community (EE365).

Emerson Exchange 365 is separate from the Emerson Exchange website that presenters & delegates used before Exchange in The Hague. So, to verify your attendance at this year’s conference, you must provide the email you used to register for Exchange in The Hague. If you are not already a member of EE365 you will be required to join.

To access the presentations, visit The Hague 2018 and follow the prompts. The first prompt will ask you to join or sign in.

Something in this particular EmrEx emphasised how things are moving and those unprepared for the change. Among some of the press people and others there was disappointment expressed that there was not a printed programme as in previous years. This correspondent is used to going away into a corner and combing through the printed agenda and selecting the most relevant sessions to attend. This was all available on line through the “Emerson Exchange Web App.” This was heralded as a “a great preshow planning tool.” All we had to do was enter a link into our our web-browser on our phones and away you went. Yes this is the way to go certainly and although I am inclined to be adventurous in using social media etc I and some (if not many) others found this a step too far to early. It was not clear that a printed version of the programme would not be available and the first hour of a conference is not the best time to make oneself au fait with a new app.

Having said that while many of the journos took notes using pencil and paper they were not adverse to taking photos of the presentation slades so they could not be said to qualify as complete luddites!

Terrific progress but…

Rewards of efficiency
This event was being held at the same time as CERAWeek 2018 in which Emerson was an important participant. Some Emerson executives thus made the trans Atlantic journey to make presentations. One of those was Mike Train, Emerson’s Executive President who delivered his talk with no apparent ill effects. In effect he was asking a question. “Just how effective is progress?” Yes, we HAVE made phenomenal progress in the last 30 years. “Modern automation has made plants more efficient, reliable and safer, but, the ‘Efficiency Era’ is reaching diminishing returns….Productivity seems to be stagnation while the workforce is stretched.”

He postulated five essential competancies for digital transformation.

  1. Automated workflows: Eliminate repetitive tasks and streamline standard operations.
  2. Decision support: Leverage analytics and embedded exportise.
  3. Mobility: Secure on-demand access to information and expertese.
  4. Change management: Accelerate the adoption of operational best practices.
  5. Workforce upskilling: Enable workers to acquire knowledge and experience faster.

Making the future!

Making the future
The next speaker was Roberta Pacciani, C&P Manager Integrated Gas and Upstream Technology with Shell. She is also President of the Women’s Network at Shell Netherlands. She spoke on leveraging the best available talent to solve future challenges. I suppose that we would have classified this as a feminist talk but of course it isn’t. As the presenter said it is not so much a feminist issue as a people issue. “Closing the gender gap in engineering and technology makes the future.”  This was a useful presentation (and in this correspondent’s experience unusual) and hopefully will be helpful in changing perceptions and preconceptions in STEM and our own particular sector.

As partof EmrEX there is an exhibition, demonstration area. Delegates may see innovative technologies applied to their plant environment. They meet with experts about topics such as getting their assets IIoT ready or how to use a Digital Twin to increase performance and explore options to prepare their plant for the future. As a guide – printed as well as on-line – the produced a Metro-like guide.
Using this we could embark on a journey through products, services and solutions where Emerson together with their partners could help solve operational and project challenges.

One of the most popular exhibits was the digital workforce experience. Here we visited a plant and were transported magically to former times to see just how different plant management is now and particularly with the help of wireless and digitisation.

It happened!

One of the good things about this sort of event is the opportunity to meet friends for the first time though social media. Sometimes one does not know they are attending unless the tweet something. Thus I realised that an Emerson engineer was present and so I went looking for him in the expos area. This it was that Aaron Crews from Austin (TX US) and I met for the first time after knowing each other through twitter & facebook for a frightening ten years. Another of these virtual friends, Jim Cahill, says, “It hasn’t happened without a picture!” So here is that picture.

The following morning there were a series of automation forum dedicated to various sectors. The Life-Sciences Forum was one which was very well attended.  Ireland is of course a leader in this sector and we hope to have a specific item on this in the near future. Emerson have invested heavily in the national support services as we reported recently.

Each evening there were social events which provided further opportunities for networking. One of these was a visit to the iconic Louwman Transport Museum where reside possibly the largest collections of road vehicles from sedan chairs through the earliest motor cars up to the sleekest modern examples. These are all contained in a beautiful building. The display was very effectively presented and one didn’t have to be a petrol-head – and believe me there were some among the attendance – to appreciate it.

It is impossible to fully report an event like this in detail. One can follow it on twitter as it happens of course. And there will be copies of many of the presentations and videos of some of the sessions on the website.

The Emerson User Group Exchange – Americas will continue “spurring innovation” in San Antonio (TX USA) from 1st to 5th October 2018. It looks exciting too.

We promised at the top of this blog an exposé of the country often called Holland in English –


So now you know!

@EMR_Automation #Emrex #Pauto

Simulating the Effect of Climate Change on Agriculture.

01/12/2017
Increased atmospheric CO2 levels and climate change are believed to contribute to extreme weather conditions, which is a major concern for many. And beyond extreme events, global warming is also predicted to affect agriculture.1,2

While climate change is expected to affect agriculture and reduce crop yields, the complete effects of climate change on agriculture and the resultant human food supplies are yet to be fully understood.2,3,4

Simulating a Changing Climate
In order to understand how changes in CO2, temperature and water availability caused by climate change have an impact on crop growth and food availability, Researchers often use controlled growth chambers to grow plants in conditions that mimic the predicted atmospheric conditions at the end of the century. These controlled growth chambers enable precise control of temperature, CO2 levels, humidity, water availability, light quality and soil quality, allowing Scientists to study how plant growth changes in response to elevated temperatures, elevated CO2 levels and altered water availability.

However, plant growth / behaviour in the field considerably varies from in growth chambers. Owing to differences in light intensity, light quality, evaporative demand, temperature fluctuations and other abiotic and biotic stress factors, the growth of plants in tiny, controlled growth chambers does not always sufficiently reflect plant growth in the field. Moreover, the less realistic the experimental conditions used during simulation experiments of climate change, the less likely the resultant predictions will reflect reality.4

Several attempts have been made over the past 30 years to more closely stimulate climate change growing scenarios including free air CO2 enrichment, open top chambers, free air temperature increases and temperature gradient tunnels, although all these methods are known to have major disadvantages. For instance, chamber-less CO2 exposure systems do not enable stringent control of gas concentrations, while other systems suffer from “chamber effects” such as changes in humidity, wind velocity, temperature, soil quality and light quality.4,5

Spanish Researchers have recently reported temperature gradient greenhouses and growth chamber greenhouses, which are specifically designed to remove some of the disadvantages of simulating the effects of climate change on crop growth in growth chambers. An article reporting their methodology was featured in Plant Science in 2014, describing how the Researchers used temperature gradient greenhouses and growth chamber greenhouses to simulate climate change conditions and study plant responses.4

Choosing the Right Growth Chamber
Compared to traditional growth chambers, temperature gradient greenhouses and controlled growth chambers offer increased working area, allowing them to work as greenhouses without the necessity for isolation panels while still allowing precise control of various environmental factors such as temperature, CO2 concentration and water availability.

Researchers have used these greenhouses to investigate the potential effects of climate change on the growth of grapevine, alfalfa and lettuce.

CO2 Sensors for Climate Change Research
Researchers investigating the effects of climate change on plant growth using greenhouses or growth chambers will require highly accurate CO2 measurements.

The Spanish Researchers used Edinburgh Sensors Guardian sensor in their greenhouses to provide accurate and reliable CO2measurements. As a customer-focused provider of high-quality gas sensing solutions, Edinburgh Sensors has been delivering gas sensors to the research community since the 1980s.4,6

The Guardian NG from Edinburgh Sensors
The Edinburgh Sensors Guardian NG provides precise CO2 measurements in research greenhouses simulating climate change scenarios. The sensor provides near-analyser quality continuous measurement of CO2 concentrations, operates in temperatures of 0-45 °C and relative humidity of 0-95%, and has a CO2 detection range of 0 to 3000 ppm. These features make Guardian NG suitable for use in greenhouses with conditions meant to simulate climate change scenarios.

In addition, the Guardian NG can be easily installed as a stand-alone product in greenhouses to measure CO2, or in tandem with CO2 controllers as done by the Spanish Researchers in their temperature gradient and growth control greenhouses.4,6

Conclusions
In order to understand the potential effects of climate change on plant growth and crop yields, it is important to simulate climate change scenarios in elevated CO2 concentrations. For such studies, accurate CO2 concentration measurements are very important.

References

@Edinst #agriculture

VR means low design costs.

27/11/2017

Jonathan Wilkins, marketing director at EU Automation discusses how virtual reality (VR) can be used to improve the design engineering process.

In 1899, Wilbur and Orville Wright, the inventors of the aeroplane, put their first model to flight. They faced several problems, including insufficient lift and deviation from the intended direction. Following a trial flight in 1901, Wilbur said to Orville that man would not fly in a thousand years. Since this occasion, good design has dispelled Wilbur’s theory.

The history of VR
With the invention of computer-aided design (CAD) in 1961, on-screen models could be explored in 3D, unlike with manual drafting. This made it easier for design engineers to visualise concepts before passing their design on for manufacturing.

From there, the technology continued to develop, until we reached cave automatic virtual environment (CAVE). This consisted of cube-like spaces with images projected onto the walls, floor and ceiling. Automotive and aerospace engineers could use CAVE to experience being inside the vehicle, without having to generate a physical prototype.

The latest advancements have introduced VR headsets, also known as head-mounted displays (HMDs) and haptic gloves. They enable users to visualise, touch and feel a virtual version of their design at a lower cost than CAVE technology would allow.

Benefitting design engineers
VR was first used in design engineering by the automotive and aerospace sectors to quickly generate product prototypes for a small cost.

Using the latest technologies, these prototypes can be visualised in real space and from different angles. Engineers can walk and interact with them, and can even make changes to the design from inside the model. This makes it possible to gain a deeper understanding of how the product works and improve the design before it is passed on for manufacturing.

Design engineers can also use VR to identify issues with a product and rectify them before a physical prototype is made. This saves time and money, but also avoids any potential problems that might arise for the end-customer, if the product is manufactured without a design error being rectified.

To study specific parts of a product and understand how it operates in greater detail, engineers often deconstruct prototypes. With physical models, this can be challenging and often leads to several prototypes being made. However, with VR they can be easily pulled apart, manipulated and returned to the original design.

The ergonomics of a product can also be analysed using VR. Decisions can then be made in the early stages of product development to ensure the final product is of the best possible standard.

Furthermore, engineers can use VR to determine whether it will be feasible and affordable to manufacture a product and to plan the manufacturing protocol. This streamlines the product development process and reduces the wasting of materials and time often made with failed manufacturing attempts.

Had VR been available in 1899, the Wright brothers would not have faced so many problems designing the world’s first aeroplane and the outcome would have been achieved much more quickly. Just imagine the designs that VR could help make a reality in the future.