Connecting, communicating and creating in Netherlands.

14/03/2018

The country of the Netherlands is where the Rhine enters the sea. It is a country which has physically built itself out of the inhospitable North Sea. Often called Holland – which is the name of one (actually two) of its provinces – it even more confusingly for the English speaking world inhabited by the Dutch speaking Dutch. If you really want to know more about Holl.. er sorry, The Netherlands watch the video at the bottom of this piece.

Although not officially the capital of The Netherlands, Amsterdam is, The Hague is the seat of Government and official residence of the King. It was selected by the Emerson User Group as the venue for their European, Middle East & African assembly, refereed to as #EMrex on twitter. These assemblies – can we say celebrations? – occur every two years. The last was held in Brussels, the capital of the neighbouring Kingdom of the Belgians and of the European Union. An sccount of happenings there are in our postin “All change at Brussel Centraal.” (18/4/2016)

Lots of pictures from the event!

The size of this event was in marked contrast to the Brussels meet which was overshadowed by the terrible terrorist attacks in that city only three weeks earlier which presented transport difficulties. This time there were over one thousand six hundred delegates filling the huge hall of the Hague Convention Centre.

Another difference referred to in many of the discussions both formal and informal were the two great uncertainties effecting all businesses and industries – the possibility of a trade war with the USA under its current administration and nearer home the aftermath of the BREXIT decision – the exit of the British from the largest economic bloc on the planet. Many developments have been put on the long finger pending clarification on these issues.

Mary Peterson welcomes delegates

Why are we here?
This event continued in the vein of previous meetings. The emphasis continuing to move to perhaps a more philosophical and certainly a more holistic view of how the automation sector can help industry. This was made clear in the introductory welcome by Novartis’s Mary Peterson, Chair of the User Group, when she posed the question, “Why are we here?”

“This is a conference for users by users.” she said. It is a place to discuss users’ practical experiences; continuing our profissional development; learning best practice and proven solutions and technology roadmaps. But above all it presented an opportunity to connect with industry leaders, users and of course Emerson experts.

For other or more detailed information on happenings and/or offerings revealed at this event.
News Releases

and on Twitter #EmrEx

The emphasis is on the totality of services and packages not on individual boxes. Emerson’s European President Roel Van Doren was next to address the assembly. We should know our plant but be unafraid to use expertese and knowledge to keep it fit for purpose. Monitor the plant constantly, analyse what is required and then act. This means seeing how the latest advances might improve production. This means harnessing the “new technologies.” In passing he drew our attention that Emerson had been recognised earlier this year as ‘Industrial IoT Company of the Year’ by IoT Breakthrough.

The path is digital
A very striking presentation was given by Dirk Reineld, Senior VP Indirect Procurement with BASF. He brought us to the top of Rome’s Via de Conciliazione on 19th April 2005. We saw the huge crowd looking towards the centre balcony as the election of a new pope was announced. He then moved forward to the 13th March in 2013, the same place but what a difference in such a short time. This time it seemed that everybody had a mobile phone held to take photographs of the announcement of the election of Francis. All we could see was a sea of little screens. He used this to emphasize a point “We are underestimating what is happening & its speed.” This is not helped by a natural conservatism among plant engineers. Change is happening and we either embrace it or get left behind. It is becoming more and more clear that in front of us “the path is digital!” He presented some useful examples of digitalisation and collaboration at BASF.

PRESENTATIONS

Registered delegates have access to slides from the main presentation programme. These slides are available for download via the Emerson Exchange 365 community (EE365).

Emerson Exchange 365 is separate from the Emerson Exchange website that presenters & delegates used before Exchange in The Hague. So, to verify your attendance at this year’s conference, you must provide the email you used to register for Exchange in The Hague. If you are not already a member of EE365 you will be required to join.

To access the presentations, visit The Hague 2018 and follow the prompts. The first prompt will ask you to join or sign in.

Something in this particular EmrEx emphasised how things are moving and those unprepared for the change. Among some of the press people and others there was disappointment expressed that there was not a printed programme as in previous years. This correspondent is used to going away into a corner and combing through the printed agenda and selecting the most relevant sessions to attend. This was all available on line through the “Emerson Exchange Web App.” This was heralded as a “a great preshow planning tool.” All we had to do was enter a link into our our web-browser on our phones and away you went. Yes this is the way to go certainly and although I am inclined to be adventurous in using social media etc I and some (if not many) others found this a step too far to early. It was not clear that a printed version of the programme would not be available and the first hour of a conference is not the best time to make oneself au fait with a new app.

Having said that while many of the journos took notes using pencil and paper they were not adverse to taking photos of the presentation slades so they could not be said to qualify as complete luddites!

Terrific progress but…

Rewards of efficiency
This event was being held at the same time as CERAWeek 2018 in which Emerson was an important participant. Some Emerson executives thus made the trans Atlantic journey to make presentations. One of those was Mike Train, Emerson’s Executive President who delivered his talk with no apparent ill effects. In effect he was asking a question. “Just how effective is progress?” Yes, we HAVE made phenomenal progress in the last 30 years. “Modern automation has made plants more efficient, reliable and safer, but, the ‘Efficiency Era’ is reaching diminishing returns….Productivity seems to be stagnation while the workforce is stretched.”

He postulated five essential competancies for digital transformation.

  1. Automated workflows: Eliminate repetitive tasks and streamline standard operations.
  2. Decision support: Leverage analytics and embedded exportise.
  3. Mobility: Secure on-demand access to information and expertese.
  4. Change management: Accelerate the adoption of operational best practices.
  5. Workforce upskilling: Enable workers to acquire knowledge and experience faster.

Making the future!

Making the future
The next speaker was Roberta Pacciani, C&P Manager Integrated Gas and Upstream Technology with Shell. She is also President of the Women’s Network at Shell Netherlands. She spoke on leveraging the best available talent to solve future challenges. I suppose that we would have classified this as a feminist talk but of course it isn’t. As the presenter said it is not so much a feminist issue as a people issue. “Closing the gender gap in engineering and technology makes the future.”  This was a useful presentation (and in this correspondent’s experience unusual) and hopefully will be helpful in changing perceptions and preconceptions in STEM and our own particular sector.

As partof EmrEX there is an exhibition, demonstration area. Delegates may see innovative technologies applied to their plant environment. They meet with experts about topics such as getting their assets IIoT ready or how to use a Digital Twin to increase performance and explore options to prepare their plant for the future. As a guide – printed as well as on-line – the produced a Metro-like guide.
Using this we could embark on a journey through products, services and solutions where Emerson together with their partners could help solve operational and project challenges.

One of the most popular exhibits was the digital workforce experience. Here we visited a plant and were transported magically to former times to see just how different plant management is now and particularly with the help of wireless and digitisation.

It happened!

One of the good things about this sort of event is the opportunity to meet friends for the first time though social media. Sometimes one does not know they are attending unless the tweet something. Thus I realised that an Emerson engineer was present and so I went looking for him in the expos area. This it was that Aaron Crews from Austin (TX US) and I met for the first time after knowing each other through twitter & facebook for a frightening ten years. Another of these virtual friends, Jim Cahill, says, “It hasn’t happened without a picture!” So here is that picture.

The following morning there were a series of automation forum dedicated to various sectors. The Life-Sciences Forum was one which was very well attended.  Ireland is of course a leader in this sector and we hope to have a specific item on this in the near future. Emerson have invested heavily in the national support services as we reported recently.

Each evening there were social events which provided further opportunities for networking. One of these was a visit to the iconic Louwman Transport Museum where reside possibly the largest collections of road vehicles from sedan chairs through the earliest motor cars up to the sleekest modern examples. These are all contained in a beautiful building. The display was very effectively presented and one didn’t have to be a petrol-head – and believe me there were some among the attendance – to appreciate it.

It is impossible to fully report an event like this in detail. One can follow it on twitter as it happens of course. And there will be copies of many of the presentations and videos of some of the sessions on the website.

The Emerson User Group Exchange – Americas will continue “spurring innovation” in San Antonio (TX USA) from 1st to 5th October 2018. It looks exciting too.

We promised at the top of this blog an exposé of the country often called Holland in English –


So now you know!

@EMR_Automation #Emrex #Pauto
Advertisements

Simulating the Effect of Climate Change on Agriculture.

01/12/2017
Increased atmospheric CO2 levels and climate change are believed to contribute to extreme weather conditions, which is a major concern for many. And beyond extreme events, global warming is also predicted to affect agriculture.1,2

While climate change is expected to affect agriculture and reduce crop yields, the complete effects of climate change on agriculture and the resultant human food supplies are yet to be fully understood.2,3,4

Simulating a Changing Climate
In order to understand how changes in CO2, temperature and water availability caused by climate change have an impact on crop growth and food availability, Researchers often use controlled growth chambers to grow plants in conditions that mimic the predicted atmospheric conditions at the end of the century. These controlled growth chambers enable precise control of temperature, CO2 levels, humidity, water availability, light quality and soil quality, allowing Scientists to study how plant growth changes in response to elevated temperatures, elevated CO2 levels and altered water availability.

However, plant growth / behaviour in the field considerably varies from in growth chambers. Owing to differences in light intensity, light quality, evaporative demand, temperature fluctuations and other abiotic and biotic stress factors, the growth of plants in tiny, controlled growth chambers does not always sufficiently reflect plant growth in the field. Moreover, the less realistic the experimental conditions used during simulation experiments of climate change, the less likely the resultant predictions will reflect reality.4

Several attempts have been made over the past 30 years to more closely stimulate climate change growing scenarios including free air CO2 enrichment, open top chambers, free air temperature increases and temperature gradient tunnels, although all these methods are known to have major disadvantages. For instance, chamber-less CO2 exposure systems do not enable stringent control of gas concentrations, while other systems suffer from “chamber effects” such as changes in humidity, wind velocity, temperature, soil quality and light quality.4,5

Spanish Researchers have recently reported temperature gradient greenhouses and growth chamber greenhouses, which are specifically designed to remove some of the disadvantages of simulating the effects of climate change on crop growth in growth chambers. An article reporting their methodology was featured in Plant Science in 2014, describing how the Researchers used temperature gradient greenhouses and growth chamber greenhouses to simulate climate change conditions and study plant responses.4

Choosing the Right Growth Chamber
Compared to traditional growth chambers, temperature gradient greenhouses and controlled growth chambers offer increased working area, allowing them to work as greenhouses without the necessity for isolation panels while still allowing precise control of various environmental factors such as temperature, CO2 concentration and water availability.

Researchers have used these greenhouses to investigate the potential effects of climate change on the growth of grapevine, alfalfa and lettuce.

CO2 Sensors for Climate Change Research
Researchers investigating the effects of climate change on plant growth using greenhouses or growth chambers will require highly accurate CO2 measurements.

The Spanish Researchers used Edinburgh Sensors Guardian sensor in their greenhouses to provide accurate and reliable CO2measurements. As a customer-focused provider of high-quality gas sensing solutions, Edinburgh Sensors has been delivering gas sensors to the research community since the 1980s.4,6

The Guardian NG from Edinburgh Sensors
The Edinburgh Sensors Guardian NG provides precise CO2 measurements in research greenhouses simulating climate change scenarios. The sensor provides near-analyser quality continuous measurement of CO2 concentrations, operates in temperatures of 0-45 °C and relative humidity of 0-95%, and has a CO2 detection range of 0 to 3000 ppm. These features make Guardian NG suitable for use in greenhouses with conditions meant to simulate climate change scenarios.

In addition, the Guardian NG can be easily installed as a stand-alone product in greenhouses to measure CO2, or in tandem with CO2 controllers as done by the Spanish Researchers in their temperature gradient and growth control greenhouses.4,6

Conclusions
In order to understand the potential effects of climate change on plant growth and crop yields, it is important to simulate climate change scenarios in elevated CO2 concentrations. For such studies, accurate CO2 concentration measurements are very important.

References

@Edinst #agriculture

VR means low design costs.

27/11/2017

Jonathan Wilkins, marketing director at EU Automation discusses how virtual reality (VR) can be used to improve the design engineering process.

In 1899, Wilbur and Orville Wright, the inventors of the aeroplane, put their first model to flight. They faced several problems, including insufficient lift and deviation from the intended direction. Following a trial flight in 1901, Wilbur said to Orville that man would not fly in a thousand years. Since this occasion, good design has dispelled Wilbur’s theory.

The history of VR
With the invention of computer-aided design (CAD) in 1961, on-screen models could be explored in 3D, unlike with manual drafting. This made it easier for design engineers to visualise concepts before passing their design on for manufacturing.

From there, the technology continued to develop, until we reached cave automatic virtual environment (CAVE). This consisted of cube-like spaces with images projected onto the walls, floor and ceiling. Automotive and aerospace engineers could use CAVE to experience being inside the vehicle, without having to generate a physical prototype.

The latest advancements have introduced VR headsets, also known as head-mounted displays (HMDs) and haptic gloves. They enable users to visualise, touch and feel a virtual version of their design at a lower cost than CAVE technology would allow.

Benefitting design engineers
VR was first used in design engineering by the automotive and aerospace sectors to quickly generate product prototypes for a small cost.

Using the latest technologies, these prototypes can be visualised in real space and from different angles. Engineers can walk and interact with them, and can even make changes to the design from inside the model. This makes it possible to gain a deeper understanding of how the product works and improve the design before it is passed on for manufacturing.

Design engineers can also use VR to identify issues with a product and rectify them before a physical prototype is made. This saves time and money, but also avoids any potential problems that might arise for the end-customer, if the product is manufactured without a design error being rectified.

To study specific parts of a product and understand how it operates in greater detail, engineers often deconstruct prototypes. With physical models, this can be challenging and often leads to several prototypes being made. However, with VR they can be easily pulled apart, manipulated and returned to the original design.

The ergonomics of a product can also be analysed using VR. Decisions can then be made in the early stages of product development to ensure the final product is of the best possible standard.

Furthermore, engineers can use VR to determine whether it will be feasible and affordable to manufacture a product and to plan the manufacturing protocol. This streamlines the product development process and reduces the wasting of materials and time often made with failed manufacturing attempts.

Had VR been available in 1899, the Wright brothers would not have faced so many problems designing the world’s first aeroplane and the outcome would have been achieved much more quickly. Just imagine the designs that VR could help make a reality in the future.


Simulating agricultural climate change scenarios.

19/09/2017
Extreme weather, believed to result from climate change and increased atmospheric CO2 levels, is a concern for many. And beyond extreme events, global warming is also expected to impact agriculture.(Charlotte Observer, 7 Sept 2017)

Although it is expected that climate change will significantly affect agriculture and cause decreases in crop yields, the full effects of climate change on agriculture and human food supplies are not yet understood. (1, 2 & 3 below)

Simulating a Changing Climate
To fully understand the effects that changes in temperature, CO2, and water availability caused by climate change may have on crop growth and food availability, scientists often employ controlled growth chambers to grow plants in conditions that simulate the expected atmospheric conditions at the end of the century. Growth chambers enable precise control of CO2 levels, temperature, water availability, humidity, soil quality and light quality, enabling researchers to study how plant growth changes in elevated CO2 levels, elevated temperatures, and altered water availability.

However, plant behavior in the field often differs significantly from in growth chambers. Due to differences in light quality, light intensity, temperature fluctuations, evaporative demand, and other biotic and abiotic stress factors, the growth of plants in small, controlled growth chambers doesn’t always adequately reflect plant growth in the field and the less realistic the experimental conditions used during climate change simulation experiments, the less likely the resultant predictions will reflect reality.3

Over the past 30 years, there have been several attempts to more closely simulate climate change growing scenarios including open top chambers, free air CO2 enrichment, temperature gradient tunnels and free air temperature increases, though each of these methods has significant drawbacks.

For example, chamber-less CO2 exposure systems do not allow rigorous control of gas concentrations, while other systems suffer from “chamber effects” included changes in wind velocity, humidity, temperature, light quality and soil quality.3,4

Recently, researchers in Spain have reported growth chamber greenhouses and temperature gradient greenhouses, designed to remove some of the disadvantages of simulating the effects of climate change on crop growth in growth chambers. A paper reporting their methodology was published in Plant Science in 2014 and describes how they used growth chamber greenhouses and temperature gradient greenhouses to simulate climate change scenarios and investigate plant responses.3

Choosing the Right Growth Chamber
Growth chamber and temperature gradient greenhouses offer increased working area compared with traditional growth chambers, enabling them to work as greenhouses without the need for isolation panels, while still enabling precise control of CO2 concentration, temperature, water availability, and other environmental factors.

Such greenhouses have been used to study the potential effects of climate change on the growth of lettuce, alfalfa, and grapevine.

CO2 Sensors for Climate Change Research
For researchers to study the effects of climate change on plant growth using growth chambers or greenhouses, highly accurate CO2 measurements are required.

The Spanish team used the Edinburgh Sensors Guardian sensor in their greenhouses to provide precise, reliable CO2 measurements. Edinburg Sensors is a customer-focused provider of high-quality gas sensing solutions that have been providing gas sensors to the research community since the 1980s.3,5

The Guardian NG from Edinburgh Sensors provides accurate CO2 measurements in research greenhouses mimicking climate change scenarios. The Edinburgh Sensors Guardian NG provides near-analyzer quality continuous measurement of CO2 concentrations. The CO2 detection range is 0-3000 ppm, and the sensor can operate in 0-95% relative humidity and temperatures of 0-45 °C, making it ideal for use in greenhouses with conditions intended to mimic climate change scenarios.

Furthermore, the Guardian NG is easy to install as a stand-alone product in greenhouses to measure CO2, or in combination with CO2 controllers as done by the Spanish team in their growth control and temperature gradient greenhouses.4,6 Conclusions Simulating climate change scenarios in with elevated CO2 concentrations is essential for understanding the potential effects of climate change on plant growth and crop yields. Accurate CO2 concentration measurements are essential for such studies, and the Edinburgh Sensors Guardian NG is an excellent option for researchers building research greenhouses for climate change simulation.

References

  1. Walthall CL, Hatfield J, Backlund P, et al. ‘Climate Change and Agriculture in the United States: Effects and Adaptation.’ USDA Technical Bulletin 1935, 2012. Available from: http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1000&context=ge_at_reports
  2. https://www.co2.earth/2100-projections Accessed September 7th, 2017.
  3. Morales F, Pascual I, Sánchez-Díaz M, Aguirreolea J, Irigoyen JJ, Goicoechea N Antolín MC, Oyarzun M, Urdiain A, ‘Methodological advances: Using greenhouses to simulate climate change scenarios’ Plant Science 226:30-40, 2014.
  4. Aguirreolea J, Irigoyen JJ, Perez P, Martinez-Carrasco R, Sánchez-Díaz M, ‘The use of temperature gradient tunnels for studying the combined effect of CO2, temperature and water availability in N2 fixing alfalfa plants’ Annals of Applied Biology, 146:51-60, 2005.
  5. https://edinburghsensors.com/products/gas-monitors/guardian-ng/ Accessed September 7th, 2017.
@Edinst #PAuto #Food

Permission to change and develop in the Life Sciences!

20/06/2017
• Enjoy a unique environment to meet and gain input from all stake holders on industry direction, challenges and solutions.
• Shape your strategy on the way solutions should be developed and applied in your facility
• Understand how partnering can take you further, faster and with reduced risk
• Experience hands on demonstrations of automation equipment and packages.

The invitation was interesting, and challenging. “Future.Now – Developing the Life Sciences Landscape Together” was an arresting title. It was a co-operative event between National Institute for Bioprocessing Research and Training (NIBRT) and Emerson. We were invited to “Boost your knowledge, gain from the experience of others and increase your professional network at NIBRT state of the art facility in Dublin!”

Mike Train, Executive President with Emerson explains their focus under the attentive eye of European President Roel Van Doren.

This correspondent was aware of the NIBRT facility but had very little idea of what it was real function or its relevance to Irish industry. This was an opportunity find out. Further looking through the programme two things became apparent. One was the calibre of personnel speaking from the Emerson organisation and then the application rather than product orientation of the various sessions.

It proved to be a very interesting two days.

Day 1: Working together towards a common future.
Presentations from NIBRT, Industrial Development Authority (IDA), GSK, Alexion, Zeton, Novo Nordisk and Emerson Automation Solutions.

Pharma v Biopharma

After a short welcome fro Emerson Europe President, Roel Van Doren, the CEO of NIBRT, Dominic Carolan, outlined the foundation and raison d’etre of the organisation. It is a training and research in the area of bioprocessing. It is located in a new, world class facility in Dublin (IRL). As medical science advances “simple” chemistry, while still essential, is not fully capable of solving all health issues – Pharma versus Biopharma. Bioprocessing is a specific process that uses complete living cells or their components (e.g., bacteria, enzymes, chloroplasts) to obtain desired products.

Thus this facility exists to support the growth and development of all aspects of the biopharmaceutical industry in Ireland. It is purpose built to closely replicate a modern bioprocessing plant with state of the art equipment.

Making Ireland ready – a good news story.
Dr Chantelle Keirnan, Scientific Advisor with the Industrial Development Authority (IDA), described the far-seeing intuitive initiative to look at bioprocessing “before it was profitable or popular!” This state body is responsible for the attraction and development of foreign investment in Ireland and had been extraordinarily successful in attracting nine of the top ten pharma companies to set up manufacturing processing plants in Ireland. They considered at the turn of the century that bioprocessing was the way that life science was going and took steps to ensure that Ireland was ready. One of those steps was the provision of Government funding of NIBRT.

Togged out for the tour

Many of the delegates – in excess of one hundred attended some from other countries – donned white coats and took the opportunity to tour the impressive facility during the event. It includes a purpose-built, multi-functional building which replicates the most modern industrial bioprocessing facility. Some idea of this facility may be gleaned from their website here.

This is a good news story. How often are decisions of state organisations regarded, not entirely without justification, with a jaundiced eye? Those that are good are “oft interréd with their bones!” The vision that saw this development in industry and the individuals who having caught the ball ran with it and brought it so successfully to fruition is worthy of equal attention and praise.

The rest of the day was an examination of the industry, processes and looking into the future. Mike Train, Executive President of Emerson spoke on the changes that are influencing industry and his company’s focus. We are facing “an evolution not a revolution” he stated, a point emphasised by other speakers throughout the day. He also stressed the importance for giving permission to change. (See full list of speakers at below.)

Pictures from the event!

We then had a series of speakers from the industry, people who get their hands dirty so to speak in actual processing speaking of their experiences and challenges. Speakers from GSK and Novo Nordisk explored areas like partnership, legacy issues, building on or expanding existing plants, saving energy, wireless. There was some discussion on the cloud and its advantages and just how vulnerable it might be to security breaches.

The discussion on handling all this data and identifying and retrieving those pieces of data which are really useful to the process brought to mind the prophetic words of the American media theorist, Neil Postman years ago, “…a central thesis of computer technology – that the principal difficulty we have in solving problems stems from insufficient data – will go unexamined. Until, years from now, when it will be noticed that the massive collection and speed of light retrieval of data have been of great value to large scale organisations but have solved very little of importance to most people and have created at least as many problems for them as they have solved…” (Neil Postman: “Amusing ourselves to death:” 1985)

Peter Zornio, Chief Technology Officer with Emerson gave their philosophy in meeting the demands of “Life Science Visions.” He lauded the various discussion groups such as the Biopharma Operations Group in helping how to keep up to date with technology and fostering new ideas.

We are on a digitizing journey. Moving from manual and paper to digital recording and control.

Day 2: “New Technology, New Processes, New solutions!”
Presentations from BioPharmaChem, GSK, Infinity Automation and Emerson.

The day started with a presentation on modular flexible manufacturing – introducing the PK Controller and a little later in the day there was an exposition on DeltaV Discovery/DeltaV 14 in maintaining data and transferning and easing technology transfer through the life cycle of drug development.

In his second presentation Peter Zornio gave the business case behing IIoT. IoT is usually referring to domestic, building environment and other civil applications. But it is also useful in the industrial environment where it is referred to as IIoT. Initially it was a link up at the instrument and control area but of late it is spreading to the portfolio of sensors. Their emphasis is on “the first mile!” (This is a backward reference to the perennial problem in many, especially rural, areas of “the last mile” – the internet connection directly into the home! – a heart felt sigh from your correspondent!)

The Real Challenges!

Ian Allen of Infinity Automation spoke on challenges to the life science automation world. “Don’t go backward to go forward” he said. We must use things like data integrity, cyber security, Microsoft dependencies and Industrie 4.0 as “gifts to leverage the opportunity and change!” The real challenge is not so much the technology but our use of it. We were coming back to “permission for change!”

We might perhaps use the words of the Bard of Avon, “The fault, dear Brutus, is not in our stars. But in ourselves….”  The “gifts” are there. The Technology is there or on the way.

Let’s own these gifts and make them our own.

 

Pic: Travis Hesketh


The Speakers:

Day 1
Dominic Carolan
CEO – NIBRT
Dominic Carolan was appointed CEO of NIBRT in April 2015. Mr. Carolan previously held senior roles in Mallinckrodt (Dublin), Genzyme (Waterford), also Genzyme (Corporate) where he was Senior Vice President of Manufacturing, and in Sanofi, where he headed their global network of Sterile Injectable Lyophilisation sites. He has successfully lead the startup of two significant Pharma & BioPharma facilities in Ireland and has a proven track record in operations leadership and in attracting and developing the talent required to deliver long term success. A graduate of UCD in Chemical Engineering, Mr. Carolan was Chairman of BioPharmaChemical Ireland from 2008-2010.
Dr Chantelle Kiernan
Scientific Advisor – IDA

Dr. Chantelle Kiernan joined IDA in September of 2009 and is responsible for attracting research related foreign direct investment for Ireland. Chantelle has responsibility for the Multinational research portfolio – spanning Pharmaceutical, Biotechnology, Medical Device, Engineering Food services industries. Chantelle has spent her career equally dispersed between academia and industry. She holds a PhD in Immunology from Trinity College Dublin in the area of immunomodulation and continued her academic career with a Post-Doctoral fellowship in Harvard University, Boston. Chantelle is currently undertaking an MSc in International Business law. She has spent almost fifteen years in industry. In her current role as Scientific Advisor for the IDA, she has been integrally involved in attracting and securing large scale R&D foreign direct investments for Ireland.

Mike Train
Executive President – Emerson Automation Solutions
Michael H. Train leads the Automation Solutions business of Emerson, which posted sales of $10.2 billion in fiscal 2015. Train began his career with Emerson in 1991 as an international planner, then took on additional responsibilities in a number of executive posts that included serving as President of Emerson Japan and Korea, VP of Corporate Planning, President of Emerson Process Management Asia Pacific, and President of Emerson’s Rosemount business. He was most recently President of Global Sales for Emerson Process Management, responsible for sales, service, support, and customer satisfaction for all products and services across five world-area organizations. In that role he was also part of the leadership team that drove strategic initiatives and investments for the entire business group. Train earned a bachelor’s degree in electrical engineering from General Motors Institute and an MBA from the Johnson Graduate School of Management at Cornell University. He currently serves on the management school’s advisory council and was a 2008 Eisenhower Fellowship recipient.
Dave Tudor
Vice President, Head of GMS Strategy – GSK
Dave joined GSK in 1992 at Worthing as a PhD Chemist from Glasgow University. He has over 20 years’ experience with the company carrying out a number of Technical, Compliance and Manufacturing leadership roles. In 1997 he moved to Irvine to take up a lead chemist role before coming Quality Control Manager in 1998. He joined the site leadership team in 2001 to run Technical Development before moving to manufacturing as Actives Production Director in 2005. During this time he completed a Masters degree in Manufacturing Leadership at Cambridge University. In 2007 he moved to GSK House to work on a central network re-structuring project before becoming Site Director at Montrose in October 2008. At Montrose, he led the transformation of the site to manufacture over 12 products for GSK including a major investment programme. In 2011 he was appointed VP Primary Supply Chain with responsibility for global Active Pharmaceutical Ingredients (API) manufacture and supply, a network of GMS sites across the world including facilities in Asia and Europe. In 2017 he was appointed VP Head of GMS Strategy with responsibility for manufacturing strategy, deployment of strategic programmes, performance management and advocacy. He plays an active role with a number of Governments and is currently co-chair of the Life Sciences Scotland Industry Leadership Group. Dave is also a member of UK Chemicals Industry Association Council and Board. Dave is married with 4 children and lives in Troon, Ayrshire. He enjoys all sports, particularly football, is a keen reader of Scottish history and does cooking to relax.
Peter Zornio
Chief Strategic Officer – Emerson Automation Solutions
As Chief Strategic Officer for Emerson Automation Solutions, Peter has responsibility for overall coordination of technology programs, product and portfolio direction, and industry standards across the Automation Solutions group. He has direct responsibility for the product definition and development organizations for control systems and software products. He has been at Emerson for 10 years. Prior to Emerson, he spent over 20 years at Honeywell in a variety of technology and marking roles, most recently as overall product management leader. Peter holds a degree in Chemical Engineering from the University of New Hampshire.
Herman Bottenberg
Marketing Director,, Zeton

PDEng. Ir. Herman Bottenberg is a chemical engineer with 15+ years of industrial experience, along with two years of Post academic work on Plant Design. He worked for 17 years at Zeton B.V. in The Netherlands, with five years of experience in project engineering and project management. The last 12 years he has been active in business development, sales and marketing. Since 2016 Herman is also responsible for the Marketing and Sales group at Zeton B.V. Herman has specialised in transformation of processes from batch to continuous, process intensification and modular processing plants for pharma and chemical industry.

Day 2
 Matt Moran
Director – BioPharmaChem Ireland
Matthew Moran is Director of BioPharmaChem Ireland. He graduated in Chemistry at Trinity College Dublin in 1980 and in Chemical Engineering at University College Dublin in 1981; he holds an MBA also from University College Dublin (Smurfit School of Business). He worked for over ten years in the pharmaceutical industry where he held a number of management positions both in active ingredient and dosage form manufacture. He is a member the European Chemical Industry Council (CEFIC). Matthew Moran is a Board member of the Active Pharmaceuticals Ingredients (API) Committee of CEFIC (CEFIC/APIC) and The European Association for Bioindustries (Europabio) BioPharmaChem Ireland represents the interests of the biopharmachem sector in Ireland. CEFIC/APIC represents the European API Industry. Europabio represents the European Biotech Sector.
Ian Allan
Automation Consultant – Infinity Automation
Currently the Managing Director of Infinity Automation, a relatively new company carrying out Automation & MES Consultancy, Strategic Planning and Major Program/Project Health checks, with blue chip Global Life Science companies and Strategic vendors that support that Industry. Formerly Ian was the Global Head of Automation & MES with Novartis, where he was responsible for the Manufacturing Automation Strategy and MES Program within Technical Operations in the Vaccines division.  Prior to that he worked for GSK as Global Automation Director responsible for Automation, Process Control and MES across 73 sites worldwide. There he led a team that developed a library of Emerson DeltaV modules to be deployed in multiple Bulk API sites across the world, as well as developing a blueprint for MES integration and Network delivery of Electronic Batch Records. Prior to that he held several roles in GSK within the Engineering and Automation departments. Ian started his career with IBM as a junior engineer when computers were a little bigger than they are today and holds a BSc in Electrical & Control Engineering from Strathclyde University. He is currently facilitating GSK’s Global Automation Steering Team and is leading the Digital Factory Automation workstream for a new Hybrid Manufacturing platform with the first instance being delivered in GSK Singapore Jurong site.
Colin Chapman
Director of Manufacturing IT – GSK
Colin Chapman is a Chemical Engineer with nearly 20 years experience in Life Sciences with GSK. Colin’s career has spanned across process engineering & automation, operations and new product introduction in both commercial manufacturing and clinical supply chains. In his current role as Director of Manufacturing IT Colin has successfully led the introduction of Manufacturing Operations Management across the clinical supply chain driving business process re-engineering and global workflow automation using technologies such as Syncade. GSK’s continuing program focuses on three value drivers, Compliance, Business Intelligence and Productivity.
Klaus Erni
Product Manager & Namur 148 Board Member – Emerson Automation Solutions
Klaus started his Emerson career in 2003 in Germany, where he was working as a Technical Manager for Key Accounts before he transferred to Austin, TX to become the DeltaV Hardware Product Marketing Manager. In 2015, he went back to Europe and took over another Global Role, being now the Technical Consultant to some major Strategic Accounts. While in Germany with Emerson, he was responsible for the technical aspects of the DeltaV Systems during the Sales and Implementation Phase, as well utilizing the latest Hardware and Software features while upgrading and expanding Systems on Key Customer sites. Prior to Emerson, Klaus was with the Hoechst AG, he did several Engineering projects with various PLC and DCS and SIS Systems and was as well a RS3 System User.
Danny Vandeput
Director Pervasive Sensing Strategies – Emerson Automation Solutions
The (Industrial) Internet of Things (IIoT) is revolutionizing the way we live but it also provides many new challenges to the industry. This can create confusion, uncertainty – combined with fuzzy statements – and different opinions. My great passion is to bring clarity in the Industrial Internet of Things and what benefits it can bring for you. I help industries to find the right perception of IIoT, how sensors can maximize profit, reduce downtime and bring the ROI into the IoT. Being already 23 years with Emerson I have assisted many types of industries on their way to Top Quartile Performance. This includes amongst other trainings, workshops, audits and implementing solutions.
#PAuto @EMR_Automation @NIBRT_ #IIoT @HHC_Lewis

Use of video in data collecting.

07/06/2017

A recent survey, conducted by HBM – a leader in the field of test and measurement – shows that video use is accelerating in data collection.

The study shows that almost half of the respondents (47%) already use video in data recording today, while 54% of the respondents expect video use within their organization to increase in the next year.

Video cameras are already used in many test and measurement applications throughout the industry in addition to data collection with traditional tactile sensors. But until now, there has been very little information on the level and nature of this use.

“Based on the study there is no longer any question that recording video data in parallel to tactile sensors or digital bus signals is becoming more and more attractive to users”, commented Christof Salcher, Product Manager Instrumentation at HBM. . “Video supports traditional sensor data and is becoming a valuable source of additional information, making the room for interpretation even narrower in testing”.

In summary, the latest survey by HBM shows:

• Video is most commonly used in structural durability, fatigue testing (48%). Machine monitoring or general lab testing (30%) and mobile data acquisition or road load data acquisitions (28%) are also relatively common areas of application.
• The most common reason for using video in data collection is to gain additional input analyzing unexpected deviations (73%). Other common reasons are decision finding (50%) and visualization of results to management (41%).
• Regular video (such as webcams) is by far the most common equipment for video in data collection. In our survey, 80% of respondents use this type. High speed video is used by over a third of the respondents (36%), often in combination with traditional video.
• Video in data collection is likely to increase substantially in the next years – this is indicated by both sides; by those already using video today and by those who do not. In total, 54% of all the respondents expect video use in data collection within their organization to increase. Among non-users that amounts to 37%.
• Use brings more use – Those already using video are more prone to increase their usage within the next years (76%). Of those 50 respondents expecting to increase their use of video in data, a majority (69%), predicts a substantial growth of 10-50%. None of those already using video expect the video usage to decrease in the next year.

“As the tactile and non-tactile worlds of data collection come together, there is not a question of using either video or traditional sensor data – but of both. Going forward, we will see sensors and video integrated together into data acquisition systems (DAQ) in more application areas over time, bringing valuable additional insight. HBM is very well positioned to face a growing demand in this area, already integrating video into a wide range of our applications,” Christof Salcher concludes.

The survey was conducted in autumn 2016 among 100 respondents from Europe, with an emphasis on the Nordics.

@HBMmeasurement #PAuto

Research and development – industry’s road to success!

23/05/2016
Andrew Keith, engineering director of power resistor manufacturer Cressall Resistors, discusses the role of research and development in the manufacturing industry.

Manufacturing flexibility has never been as important for industry as it is today. In a world of interconnected devices and smart factories, the ability of a manufacturer to innovate and adapt to its customers’ requirements is vital. For many manufacturers, the road to innovation starts with research and development (R&D). 

CRE167-Research_and_developmentI joined Cressall Resistors full-time in 2009, after completing two summer placements with the company during my university studies.  Back then, the existing standard product range catered for most applications. Five years later, the R&D demands have skyrocketed. To respond to the industry need, many manufacturers find themselves investing in their research, design and test capabilities.

Many of the products Cressall manufactures are made in small batches for specific customer requirements. The ability to develop, manufacture and support bespoke solutions puts Cressall at a significant advantage in the market. However, the conditions are more competitive than ever and to ensure our solutions are price competitive, we have to be able to explore through simulation and testing all design possibilities.

Developing our in-house R&D capability allows Cressall to adapt its product range, meaning that when a customer gives us their product specifications, it’s likely that we already have a close fit. Expanding the product range isn’t the only positive outcome of having an onsite R&D facility. Here are the five advantages you need to be aware of when considering R&D.

Global success
Manufacturers with constant R&D investments have a higher chance of succeeding in the global market. To attain the best professional advantage, investment in R&D comes hand in hand with processes such as market development and new business processes.

Innovate and flourish
Manufacturers should be firm about what they plan to accomplish with their business. The most successful businesses are always innovating. They are always finding new ways to build up their competitive advantages. R&D is necessary in boosting the vision and objectives of a business, so companies should never be reluctant to take action toward innovation.

Cressall’s testing facility provides the means to carry out impulse tests of up to 400,000 Volts. This facility is allowing us to explore the limits of existing designs. We can make refinements to designs and change the materials we use to extend the limits of the technology we have already developed. 

Better business outcomes
There is a solid relationship between the amount of effort put into research and development, and the way a company performs. Companies that use R&D investment as the main driver for progress are inclined to achieve better outcomes for investors and overall be more innovative than their competitors.

Cressall has recently invested in a temperature regulated water circulation system that can be used for developing our water cooled resistors. The continued success of the innovative water cooled EV2 resistor has merited investment for further development. We have a development program in place which is based on feedback from the market place. As a result we are looking to create smaller designs with lower pressure drops as well as reducing cost.

Economic growth
R&D is recognised as an important factor in economic growth and balance. R&D can easily lead to highly valued technologies, strategies and designs for your company that could be the origin of potential value when considering sustaining a competitive advantage.

Tax credit
Qualified R&D projects allow manufacturers to defray relevant costs with the help of the Research and Development Relief for Corporation Tax. This option allows a business to reduce its tax bill. Small to medium size businesses also get tax credits in cash disbursed by British Revenue and Customs. Each country will have different procedures of course.

The build of Cressall Resistor’s R&D facility is ongoing. Earlier in 2015, the space was opened and since then, we have focused on bringing in major test equipment. The test area facilitates for thermal testing of Cressall’s naturally ventilated or water cooled resistors and lightning impulse testing up to 400kV for high voltage equipment.