#EmrEX: All change at Brussell Centraal.

18/04/2016
Emerson User Group EMEA in Brussels, Belgium – 12th – 14th April 2016

“Seems to me that #EMrex is focusing not so much on new technologies, though important, but looking closer at how we do things.”  our tweet on day one.
Cfrpq9-UUAE8qVi

Brussels looked lovely on the morning that the Emerson User Group meeting opened. There was little to suggest the trauma that the city had faced just a few short weeks previously as delegates strolled through the sun-lit streets to the conference centre. The security however was markedly tighter as we entered the building however with strict adherence to the best security practices. However once inside the building things were as normal.

 Emerson Exchange Brussels – The Videos!

Other Reports (as they appear)
• Operational Excellence at Emerson Exchange Brussels (Emerson’s Stuart Turner – 20/4/2016).
• Nick Denbow ‘s travel travails: My worst week as an air traveller!  (30/4/2016)

Speaking with the organisers it promised to be a bumper event, stretched as it was over three days examining all aspects of automation, experiences, applications and of course exciting new products and concepts. The attendance was slightly down on the last time in Stuttgart, some were reluctant to travel, others were unable to make it due to the inability of the severely damaged to adhere to a normal service. Those who attended were in part in broad agreement with the message penned by Emerson’s Travis Hesketh – Standing up for Brussels. Indeed the User Group very quickly confirmed after these terrible events that they were going ahead with #EMrex. At several of the social events at the periphery, like the evening reception for publishers and journalists the people who suffered were remembered.

The venue was a modern conference and the one hundred or so presentations and industry forums were stretched over about six floors including an exhibition floor and at the very top of the building was a cyber café and a wonderful panoramic hall with the breathtaking view (featured at the top of this page from a tweet by Emerson’s social media guru – Jim Cahill)

But on to the the meeting!

Peter Iles-Smith of GlaxoSmithKline opened proceedings as chair of the Users Exchange Board. He welcomed the over two thousand delegates from so many countries through out the EMEA who travelled for the event.

Steve_SonnenbergSteve Sonnenberg, President Emerson Process Management (pictured right) and Roel VanDoren, their President in Europe, in a joint presentation entitled “New Reality, New Opportunity” addressed the changes and challenges facing companies in the 21st Century. They did not talk about products or applications but on ways of doing things. Indeed during the presentation we tweeted: “Emerson’s approach – yes equipment, but more importantly perhaps is attitude or culture.”

Nobody does business the way they it was done even twenty years ago, when the internet was a baby and nobody imagined never mind thought possible social media platforms like twitter,  yet in many cases industry is way behind in adapting to change. Possibilities are there which were inconceivable a short time ago and these need to be harnessed for the good of humanity.

Research into these possibilities, new technologies are leading to changes especially the importance of planning including all stakeholders at the earliest opportunity. This thinking is leading to an innovative technology and engineering-based approach for improved capital efficiency such as their Project Certainty approach  which aims to tackle complexity by decoupling the dependencies suppliers have on each other, eliminating bottlenecks and allowing concurrent work streams. In a word it aims to transform capital investment and releasing the frightening amounts of money currently being lost in big and not so big projects.

And these figures are frightening. If the type of approach spoken of here is adopted savings of up to €400 Billion (yes BILLION) would be released to invest in, for instance,  production, reliability, safety, energy, training, security and innovation.

So what is involved?

Xavier_MarchantXavier Marchant, (right), Emerson’s Vice President Process Systems and Solutions in Europe, gave dramatic examples of the possible savings in labour and materials. For instance the decision to use smart junction boxes in a large project could save both money and space (95% in control room space). Spare parts are another area where there is phenomenal waste. He quoted a spokesman from a International Energy and Chemical Company, “On our last construction project we overspent on maintenance spares to the tune of €50,000,000…we just wrote it off….because we did not have a robust spares analysis process.” Reduce the complexity by the involvement of stake holders at the start of planning for a project and allowing them to develop it side by side. One simple idea is to separate software from hardware in the development. The “old way” is to tie them together from the start whereas this way the software can be developed using virtual systems and then later on when the actual operation is seen to work in the virtual world (he called it virtual FAT – Factory Acceptance Test) it may be introduced to the real or concrete world – or “late binding” as he called it.

vFAT
Virtual FAT has far less chance of harming one than the real thing?

He quoted  François Davin of Sanofi “Emerson’s Remote Virtual Office allowed us to collaborate with experts and resources from multiple sites to conduct our Factory Acceptance Test (FAT). The result was less travel and site disturbance to our operations. Also, more operators could participate remotely which improved the new automation system adoption.”

We were introduced to the concept of  quartile performance and their site Top Quartile Performance is a exposé of how they view this as a concept and how it is influencing their thinking as a group.

Peter_Zornio

Of course all these changes would be impossible without the availability and enthusiastic embracing of the so-called “new” technologies. Peter Zornio (right), Emerson’s irrepressible Chief Strategic Officer, gave us an insight into these and how the company is using these and its co-operative involvement with the pioneers in these , the Internet of Everything(CISCO),  Industrial Internet (GE), Smart Planet (IBM) and The Internet of Things (Microsoft). These technologies, and others embryonic or not even conceived of are guiding  the current and future development of technology used in the manufacturing and processing sectors.

Keynotes: The Emerson User Exchanges whether in the USA or EMEA always have exciting and inspirational keynote speakers each day. This event was no exception. Jack Uldrich, a futurist spoke about future-proofing business. The majority of businesses are not ready for what is happening in the real world or for the speed at which it is happening.

Another of these speakers Prof Jan Rotmans who spoke about change. He maintains that we are not living through an “era of change” as a “change of era!” Many of us are in the old era, our mobile phone is just that, we read newspapers, buy books in bookshops. Our kids live on their mobile phones, they are their liveline. We are “old-fashioned” our kids are “cool!” Change is disruptive and the old ways are totally unable to cope. The old top-down certainties are dissolving and the “common man” is taking charge, sometimes violently. Chaos is the name of the game.

Finally a veteran at EmrEX, David Beckman, brought all the thoughts and ideas of New Reality, New Opportunity together. In view of Rotmans’ talk earlier the title he chose was more than relevant as he introduced delegates to the “Worst Case Scenario Survival Handbook.” Although he prepared us for worst case scenarios he described real opportunities for industrial automation.

Presentations. The various threads were divided into five headings or sectors, Business & Projects; Operate Safely, Securely and Legally; Process Optimisation; Maintenance & Reliabilitym and, Control System Applications & Migrations and were held through each of the days.

Forums: There were also Industry Forums with panels and general discussions on the various specialities e.g. Life Sciences or Refining & Petrochemicals. These were opportunities for participants to learn and exchange information and experiences with each other.

Training: There were also training  sessions and other sessions (called Roadmaps) on Emerson products and possible future developments.

projcertExpo

ExpoEmrEx16274Solutions EXPO: Of course no event is complete without actually seeing product and EmrEX is no exception. The floor was divided under the same zone headings as the threads of presentations above. (See sketch on left).

There were several unique exhibits. One was the Operations Centre of the Future. This was an imaginative presentation of a plant with a H.A.L. like computer responding (or not) to commands or requests from the operatives. It featured a drone delivery of spare parts and a really effective alarm situation which featured a realistic vibration of the floor. Of course the real message is that though it is the future most of the technology used is possible today.

Of course the Project Certainty concept featured prominently in the Business & Projects area and we were show possible scenarios. They had also rather bravely set up a wall where delegates could post what they consider are the features that should be addressed in projects. This should help “to focus ruthlessly on what’s directly relevent to a company strategy.”

Of course there were actual instruments on display to examine and handle.

Ind1stNotable was this industry first, the Rosemount X-well system, a wireless transmitter, accurately measuring process temperature without need for thermowell. Accurate process temperature measurement is possible without requiring any intrusions or penetrations into the process, allowing for quicker and easier installation along with simplified long-term maintenance. Users do not have to design, size or maintain thermowells. Wake Frequency Calculations are eliminated, as well as time spent determining material compatibility, the right insertion length and the necessary profile.

pressure_gaugeAlso the new Emerson Wireless Pressure Gauge created quite buzz among delgates. Th“This new gauge design fundamentally will change how customers use pressure gauges by helping them make better business decisions!”  It is another industry first. Does this signal the end of the Bourdon Tube?

Energy management is of course critical in all processes. It is effected not only by cost factors but also by legislation driven by concerns on pollution and global warming. Here Emerson demonstrated some prototypes of monitoring and control equipment not yet available. They emphasised savings on space occupied and of course ease of use by operatives.

Jim_CahillAnother very popular item was on the Maintenance & Reliability Zone. Here was an opportunity to experience the immersive training simulator. A goggle like apparatus was placed on the head and using a game-like hand piece the engineer is able to travel through a plant and see where various problems may be without any danger to him or her. It is a fascinating experience and one really feels that one is travelling through the plant rather than sitting or standing in a control room or office.  In this picture we see Emerson’s Chief Blogger, Surface Dweller, Head of Social Media enter the virtual world for real! We can confirm that he returned to real reality afterwards.

Around the periphery of the EXPO were the booths of companies which compliment the Emerson offering – what they call their complementary and strategic partners.

history-passageThere was also a section dedicated to history featuring milestones in science and automation over the years. It was a demonstration of change in the past. What will feature in future shows? The new opportunities taking advantage of the new realities of the past.

Always a major highlight of the Emerson User Group events is waht the call the “Networking Event.” This year was rather unique in that it was a visit to the Museum of Fine Arts and the Magritte Museum. This was an unique opportunity to see the best of Belgian painters – creativity of a different type than that extolled during the day sessions. Artists such as the Brueghels, Rubens, Jordaens and Magritte were enjoyed during this evening. Food and beverages were served – Belgium is famous for its beers of course but it also has its own cuisine and of course it’s chocolate is to die for.

This years event, despite the unexpected difficulties, was on a par, indeed because of these difficulties had perhaps more user participation than previous ones. There were many exciting things to see, concepts to understands and friends with which to share experiences.  And of course fun with a capital F.

Look at this and tell me people weren’t enjoying themselves! (Twitter pic ‏@Julian_Annison)

CgARbxJWQAAV7Vc

Emerson’s Travis Hesketh and Nick Taylor appreciating (?) art.


Our unedited photos from the conferenceon the Read-out Facebook page.

Follow on twitter #EmrEX

The videos here give an impression of each day:
Day One


Day Two


Day Three

• We have written about our travelling experiences to and from Brussels in our personnel blog (Sa Bhaile: (“Home” in Irish). These were relatively smooth if labourious but there is indeed no comparison to the experiences of Nick Denbow of ProcessingTalk which he outlines on their blog: My worst week as an air traveller! 


Previous EmrEX EMEA Events.
2014: Stuttgart: Revving up in Stuttgart!
2012: Duesseldorf: Automation returns to Düsseldorf!

All our reports on EmrEX Events (including North America).


#EMrex #PAuto @EmersonExchange @EmersonProcess #PAuto #IoT

Food & Pharmaceutical Futures.

21/03/2016

ISA’s first international symposium outside of North America is adjudged a success.

centreview

From the time it was firsted mooted for Ireland in 2015 the planning for the 3rd ISA Food & Pharmaceutical Symposium was embraced with enthusiasm by the local Ireland Section. This was in Philadelphia early in 2015  and since then the ISA’s Food & Pharma Division under the able directorship of Canadian Andre Michel has ploughed forward overcoming setbacks and the not inconsiderable distances between North America and the capital of Munster. Chair of the symposium and former Ireland Section President, Dave O’Brien directed a strong committee charged with ensuring the this, the first such international symposium organised by the ISA outside of North America would be a resounding success.

And it was.

Venues were assessed, speakers recruited and the various minutiae associated with organising an international event were discussed, duties asigned and problems solved over many late night transatlantic telephone conferences. Using the experience of the ISA staff in North Carolina and the many years experience of organising table-top events and conferences in Ireland by the Ireland Section a very creditable event was staged at the Rochestown Park Hotel. With some justification the Symposium Chair could state before the event started “We have assembled a truly outstanding program this year, featuring some of the world’s most accomplished experts in serialization, process optimization, cyber security and alarm management to name a few. These experts will speak on the vital issues affecting food and drug manufacturers and distributors. We are delighted to have the opportunity to bring this event to Ireland for its first time outside of the United States!” Indeed upwards of 200 registrands attended the two day event and it was notable that the bulk of these stayed until the final sessions were completed.

• All through the event highlights were tweeted (and retweeted on the Ireland Section’s own twitter account) with the hashtag #FPID16. See also the ISA official release after the event: Food & Pharma symposium almost doubles in size!

day1e

ISA President Jim Keaveney (3rd from right) with some of the speakers ath the FPID Symposium

Technology and Innovation for 2020 Global Demands
Two fluent keynote speakers, Paul McKenzie, Senior Vice President, Global Biologics Manufacturing & Technical Operations at Biogen (who addressed “Driving Change Thru Innovation & Standards”) and Dr Peter Martin, VP and Edison Master, Schneider Electric Company (Innovation and a Future Perspective on Automation and Control) may be said to have set the tone. The event was also graced with the presence of ISA Internationa President for 2016 Mr Jim Keaveney.

We will highlight a few of the sessions here!

Serialization:
The important subject of serialization which affects all level of the pharmaceutical business especially in view of deadlines in the USA and the EU. From an overview of the need and the technology to a deep dive into the user requirements, this session provided the latest information on the world requirements and helping provide the solution needed in each facility. Speakers, as in most sessions, were drawn from standard, vendor and user organisations as well as state enforcement agencies.

Track & Trace:
In the parallel Food thread of the symposium the role of track and trace technologies were examined. Product safety, output quality, variability and uniqueness of customer requirements manufacturers are facing increasing demands on the traceability of raw materials, real-time status of manufactured goods and tracking genealogy of products throughout the value chain from single line to the multiple sites of global manufacturers. The evolution of data systems and technologies being offered means greater benefits for Industry and presenters Vision ID and Crest will show these solutions and the advantage of modernization.

 

day1a2Both threads came together for much of the event mirroring the similarity of many of the technologies and requirements of each sector.

Digitalization:
Digitalization in industry shows what bringing the worlds of automation and digitalization together provides true and advanced paperless manufacturing with more complex devices and interconnected data systems. This is an enabler to integrated operations within industry. Using MES as a core concept to create a Digital Plant and optimized solutions with data driven services was explained. And a practicale example of a plant was discussed showing the journey to paperless manufacturing and a real pharmaceutical strategy of integrating automated and manual operations.

 

eric_cosman

Eric Cosman makes a point!

Cybersecurity:
Of course this is one of the key topics in automation in this day and age. Without implementing the proper preventative measures, an industrial cyber-attack can contribute to equipment failure, production loss or regulatory violations, with possible negative impacts on the environment or public welfare. Incidents of attacks on these critical network infrastructure and control systems highlight vulnerabilities in the essential infrastructure of society, such as the smart grid, which may become more of a focus for cybercriminals in the future. As well as threats from external sources steps ought to be taken to protect control and automation systems from internal threats which can cripple a company for days or months. This session highlighted the nature of these threats, how systems and infrastructure can be protected, and methods to minimize attacks on businesses.

 

Automation Challenges for a Greenfield Biotech Facility:
These were outlined in this session in the pharmaceutical thread. Recent advances in biotechnology are helping prepare for society’s most pressing challenges. As a result, the biotech industry has seen extensive growth and considerable investment over the last number of years. Automation of Biotech plants has become increasingly important and is seen as a key differentiator for modern biotech facilities. Repeatable, data rich and reliable operations are an expectation in bringing products to market faster, monitor and predict performance and ensure right first time delivery. This session provided the most topical trends in automation of biotech facilities and demonstrated how current best practices make the difference and deliver greater value to businesses.

Process Optimization and Rationalization:
Meanwhile in the Food & Beverage thread incremental automation improvement keeps competitiveness strong. Corporate control system standardization leads to constant demand for increases in production and quality.

Industry 4.0 (Digital Factory: Automate to Survive):

Networking

Networking between sessions

The fourth industrial revolution is happening! This session asked how Global Industry and Ireland are positioned. What did this mean to Manufacturer’s and Industry as a whole? The use of data-driven technologies, the Internet of things (IoT) and Cyber-Physical Systems all integrate intelligently in a modern manufacturing facility. Enterprise Ireland and the IDA headlined this topic along with the ICMR (Irish Centre for Manufacturing Research) and vendors Rockwell and Siemens.

OEE and Automation Lifecycle: Plant lifecycle and Operational Equipment Effectiveness

Networking2

More networking

Worldwide today many of the over 60 Billion Euro spend in installed control systems are reaching the end of their useful life. However, some of these controls, operational since the 80’s and 90’s, invested significantly in developing their intellectual property and much of what was good then is still good now. Of course some aspects still need to evolve with the times. This requires funding, time and talent. For quite some time now there has been a skilled automation shortage at many companies leading organizations to outsourcing, partnerships and collaboration with SME’s to help manage the institutional knowledge of their installed control systems. With corporate leadership sensitive to return to shareholders, plant renovation approval hurdle rates are usually high when it comes to refreshing these control systems. In many manufacturing facilities, engineers and production managers have been asked to cut costs and yet still advance productivity. To solve this dilemma, many world class facilities continue to focus on driving improvements through the use of automation and information technology. Some are finding that using existing assets in conjunction with focused enhancement efforts can take advantage of both worlds. Here we were shown great examples of where innovation and such experiences are helping to create real value for automatio modernization.

 

day1b2

Alarm management:
And of course no matter how sophisticated systems are Alarms are always require and neccessary. DCSs, SCADA systems, PLCs, or Safety Systems use alarms. Ineffective alarm management systems are contributing factors to many major process accidents and so this was an importan session to end the symposium.

The social aspect of this event was not forgotton and following a wine reception there was a evening of networking with music at the end of the first day.

Training Courses:
On the Wednesday, although the symposium itself was finished there were two formal all day training courses. These covered, Introduction to Industrial Automation Security and the ANSI/ISA-62443 Standards (IC32C – Leader Eric Cosman, OIT Concepts ), and Introduction to the Management of Alarm Systems (IC39C – Leader Nick Sands, DuP0nt). These, and other, ISA courses are regularly held in North America and the Ireland Section occasionally arranges for them in Ireland.

All in all the Ireland Section and its members may feel very proud in looking back on a very well organised and informative event which in an email from one of the attendees, “Thank you all, It was the best symposium I attended in the last 10 years!”

Well done!

day1c

#FPID16 #PAuto #PHarma #Food

The 2017 FPID Conference is scheduled for Boston (MA USA) for 16-17 May 2017.


It’s the little things that trip you up!

22/01/2016
By Brian Booth, VP of the Water Treatment Innovation Platform, NCH Europe

There’s a lot of chemistry, physics and maths involved in perfecting your water treatment solution. To make sure you successfully treat and protect your system you need to get the equilibrium right, and this relies on balancing all the appropriate equations – even the little things you may not give much thought to. Missing something like half life out of your planning can have serious negative implications for your water treatment, especially when it comes to complying with regulations such as those for Legionella control.

When dosing your water cooling system with biocides it’s imperative that the concentration is correct and that it remains at a continuous concentration for a suitable period of time. While this sounds simple, it’s easy to forget that any bleed water required to compensate for water that may evaporate out of a system, will take a portion of your biocide with it.

Say you put 10 tonnes of make-up water into your system, and every hour 1 tonne runs off as bleed water, this will determine the half life for your system. So for example, let’s imagine the chemical you are using to meet the Government’s Health and Safety Executive (HSE) Legionella control L8 Code of Practice needs to remain at a concentration of 100 parts per million (ppm) for three hours to be successful.

If you just dose 100ppm and walk away, the concentration will gradually fall from the time of dosing and will not remain high enough for long enough as the bleed water will take a portion away with it. This will result in a failure to meet the regulation, making you negligent and leaving you liable.

This is why it’s vital to be aware of half life so that you can increase the dose of your biocide accordingly. Do you know how many hours it would take to reduce a 100ppm dose to 50ppm in your water cooling system?

Although it’s hard to be 100 per cent accurate, you can work out your half life with this simple equation:

 

Half_Life_hours.jpg

If you know your biocide is going to take three hours to be effective, but the half life of your system is one hour you’re going to have to make some adjustments to maintain appropriate concentration. For instance, using our above example of legionella control biocide, to stay at a minimum of 100ppm for long enough you’ll need to dose to 800ppm.

A bit of predictive mathematics goes a long way towards protecting your water system and keeping you compliant. Don’t let a little thing like half life leave you vulnerable to negligence claims – do the maths first!

Half_life_in_water_treatment


A new (3-D) perspective in presence detection.

06/04/2015
Irish/German co-operation in new technologies creating a paradigm shift in the planning of safety for current and future manufacturing systems.

Presence detection is a critical element in the basis of safety for many pharmaceutical and bio pharmaceutical processes. Detecting presence of workers prior to start-up and during operation of machinery and processes is an effective means of injury prevention. Likewise product can be protected from human contamination using collaborative robots allied with relevant 3-D presence detection. The pharmaceutical sector has always had to deploy sophisticated processes and technology in its manufacturing environment while maintaining the highest safety standards.

G-Funktionsprinzip-SafetyEYE-EN-568This is an approach which responds positively to the need for worker safety while minimising production disruption. Process components such as centrifuges and barrel mixers pose a significant risk to workers because of high speed rotational action or agitation. Likewise transportation of storage units such as intermediate bulk containers and the use of automated wrapping and palletising machinery create the need for effective safeguarding. 3D sensing systems provide many advantages through the introduction of barrier-free safeguarding.

SafetyEYE, a 3-D virtual detection system, provides a comprehensive protection zone around such machinery. Developed jointly by the Pilz Software Research and Development team in Cork (IRL) and the Product Development division in Ostfildern (D), the company considers SafetyEYE as an example of new technologies creating a paradigm shift in the planning of safety for current and future manufacturing systems.

Named ‘Safety Company of the Year’ for 2014 by the Institution of Occupational Safety and Health’s (IOSH) Desmond-South Munster Branch, the award recognised Pilz’s commitment to continuous innovation, singling out the development of SafetyEYE as central to this commitment.

Bob Seward, chair of the IOSH Desmond-South Munster Branch, said: “The development of this innovative SafetyEYE technology will make a significant difference in terms of protecting people at work while they operate around machinery danger zones. Our members were very impressed with SafetyEYE and what it can achieve in terms of accident prevention and safeguarding workers.”

The world’s first 3D zone monitoring system SafetyEYE comprises a three-camera sensing device, an analysis unit and programmable control capability.

The sensing unit creates the image data of the zone to be protected and the stereoscopic cameras allow for precise distance and depth perception. Adjusting the height of the camera device allows for varying zone dimensions and areas of coverage. The image data is processed by the analysis unit to detect any intrusion of the defined 3-D protection zone and is relayed to the programmable safety and control system (PSS) for activation of the appropriate safety response.

The avoidance of an obstacle-course of physical guards has obvious advantages for increased freedom of interaction and ergonomics between machinery and humans without compromising safety for both. Because of the highly configurable software a wide range of detection zones can be designed either using pre-defined geometric forms or bespoke shapes. These zones can then be assigned various safety-related actuations with reference to the risk from an audio-visual warning to shut-down.

SafetyEYE can be used to prevent start-up of machinery when persons are in a danger zone or provide warnings and if necessary activate a shutdown if an operator enters a danger zone while such plant is running. The system can be configured to signal a warning as the worker enters the perimeter of the defined safety zone and as he continues further into the zone initiate further safety actions. The machine can remain in this suspended state while the worker completes his task. Once the worker has cleared the area the machine’s activities can resume in accordance with the worker’s egress from the safety zone. This incremental reactive capability allows for minimum downtime and so optimal productivity is maintained. For workers who only encroach on the outer points of the safety zone the triggered warning will uphold the safety integrity of the work space without limiting operation. Likewise, the system can be configured to allow for pre-defined spaces within the protection zone to be breached without shut down. This is especially useful for supervisory personnel who need to access control components which lie within the safety zone. Again they may complete their task safely without the need to disrupt the manufacturing process.

To achieve the same level of safety in such a scenario as this, a whole range of other safety measures may have to be deployed, such as guard-doors, with the physical and visual restrictions these solutions will impose. Safety for workers venturing beyond these guards would then require optical sensors which operate two-dimensionally along a plane and may require a multiplicity of sensors to provide comprehensive monitoring. This mix of solutions can present significant cost implications and their static single-plane positioning will raise costly design challenges. As SafetyEYE is positioned above the manufacturing area it does not present any physical or visual obstruction and it is also far less likely to be interfered with than other ground-level safety measures which are always more vulnerable to intentional or accidental interference. The 3-D zonal capability means that one sensor unit can provide far more safety coverage than the planar sensors. Such imaging-based devices also have a recording functionality so that safety zone breaches can be recorded or production activity monitored to feed into productivity metrics.

These attributes were acknowledged by Bob Seward of the IOSH when presenting Pilz with the award. “With the introduction of this certified technology, safety can no longer be seen as a barrier to work, slowing work down or stopping work. It can be truly integrated in the work system.”

Pilz Ireland managing director John McAuliffe said: “Pilz were honoured to receive this award. The area of safety in which we work is constantly changing and Pilz need to be innovative in order to provide our customers with solutions that achieve safety in lean manufacturing environments.” Providing services from risk assessment, safety design and safety training to customers all over the world the company views continuous development of processes and products, such as SafetyEYE, as vital in meeting the constantly evolving demands of the modern manufacturing environment.

The Association for Packaging and Processing Technologies (PMMI) estimates that 34% of primary pharmaceutical operations in North America by 2018 will be carried out by robots, compared with 21% in 2013. This increasing automation, along with the rapid growth of collaborative robots across all sectors, is heralding a new era of human-robot interaction in manufacturing.

SafetyEYE is especially effective in ensuring the safe deployment of collaborative robots which are ideal for handling materials and ingredients in a decontaminated environment but which require some level of interaction with operators who need to approach to carry out supervisory, control or intervention tasks.

Such are the potential production efficiencies brought about by collaborative robotics in the bulk pharmaceutical manufacturing sector that Health and Safety managers, engineers and suppliers will need to align their safety strategy in line with this new industrial environment.

As with all new technologies care and due process must be exercised in the integration with other plant and machinery. Structured risk assessment considering the specific hazards leading to intelligent safety concepts are the key to successful adoption of such new technologies. Pilz is pioneering safe automation with the continuous development of its services and products, such as SafetyEYE, ensuring that its customers can anticipate the safety challenges presented by industry developments such as collaborative robots.


Celebrating twenty years abnormality!

21/07/2014

This year the Abnormal Situation Management (ASM®) Consortium  is celebrating 20 years of thought leadership in the process industry. The ASM Consortium grew out of a grassroots effort begun in 1989 by ASM to address alarm floods. Honeywell spearheaded the development of a proposal to the US NIST, Advanced Technology Program to form a Joint Research & Development Consortium.

Background on the ASM ConsortiumasmThe ASM Consortium was started in 1994 to address Process Industry concerns about the high cost of incidents, such as unplanned shutdowns, fires, explosions, emissions, etc. The term, Abnormal Situation Management®, was used to describe it. Matching funds from NIST enabled the consortium to spend several years researching and developing highly-advanced concepts to address the problem of abnormal situations. Since then research has continued and increasing effort has been put into development and deployment of solutions that incorporate ASM knowledge.The basis of the ASM Consortium is collaboration and information-sharing. By working together, members achieve far more than they could working alone. Research results are published for members, and often further shared by means of webinars, seminars and workshops. User members also guide Honeywell in selection and development of product solutions that incorporate ASM knowledge. Non-members can benefit from ASM Research as ASM Effective Practices Guidelines for Alarm Management, Display Design and Procedural Practices are available for purchase on Amazon.com.

The proposal addressed the challenging problem of abnormal situation management. In preparing for this proposal effort, Honeywell and its collaborators created the Abnormal Situation Management (ASM) Joint Research and Development Consortium (referred to as ASMC) under the U.S. Cooperative Research and Development Act. In November 1994, the ASM research joint venture began its research with $16.6 million (€12.27m) in funding for a three year study program, including $8.1 million (€6m) from ATP and industry cost-sharing of $8.5 million (€6.29m).

This year, ASM Consortium members have met twice for a week-long Quarterly Review Meetings (QRM) , once at Houston, Texas (USA) in April and then again at Antwerp (B) in June. Along with its normal business, the Consortium discussed plans to celebrate the Consortium’s 20 year of service to the Process Industry. The Quarterly Review Meetings are a platform for the ASM Consortium members to share the benefits gained from the ASM practices and products, and to discuss new challenges faced in plant operations. Members of the Consortium besides Honeywell include industrial manufacturers, a human factors research company, and universities that collaborate to research best practices for managing abnormal situations in industrial facilities.

To celebrate its 20th year, ASM Consortium will be spreading further awareness about managing and mitigating abnormal situations in process industries by publishing journal articles, white papers at leading industry conferences, and a planned video.


Is hiring instruments a good safety bet?

12/05/2014

Why instrument hire makes occupational safety sense!

Decisions concerning the acquisition of occupational safety monitoring instrumentation are often made by operational staff that may not have visibility of the full financial implications of their choices. This article, by James Carlyle of Ashtead Technology, examines the factors affecting these decisions and explain why a strategic decision to hire instrumentation can deliver substantial and wide-ranging advantages.

Background
The Management of Health and Safety at Work Regulations 1999 (originally introduced in Britain 1993 in response to an EU Directive) require employers and self-employed people ‘to carry out a suitable and sufficient assessment of the risks for all work activities for the purpose of deciding what measures are necessary for safety.’  However, the risks arising from toxic gases, dust, explosive mixtures and oxygen depletion can be complex and constantly changing. So, in addition to an initial risk assessment, ongoing monitoring is often necessary to ensure the protection of staff and others.

Employers may choose to conduct their own testing and monitoring, or they may prefer to employ the services of professional consultants to conduct the risk assessments. Either way, the employer of the consultant has to decide whether to purchase the instrumentation or to rent it.

The risks
Before examining the ways in which testing and monitoring should be undertaken, it is first necessary to consider the risks that need to be assessed.

Fire and/or an explosion can result from an excess of oxygen in the atmosphere, for example, from an oxygen cylinder leak, or an explosion may occur from the ignition of airborne flammable contaminants that may have arisen from a leak or spillage from nearby processes.

Toxic gas detection

Toxic gas detection

Toxic gases, fumes or vapours may also arise from leaks and spills, or from disturbed deposits or cleaning processes. Gases and fumes can accumulate in confined spaces such as sewers, manholes and contaminated ground. They can also build up in confined workspaces for welding, flame cutting, lead lining, brush and spray painting, or moulding using glass reinforced plastics, use of adhesives or solvents. Carbon monoxide, particulates and hydrocarbons may also become a problem in situations where the products of combustion are not exhausted adequately. Plant failure can also create gaseous hazards. For example, ammonia levels may increase if refrigeration plant fails or carbon dioxide may accumulate in some pub cellars following leaks from compressed gas cylinders.

Oxygen depletion in workplace air can cause headaches, breathlessness, confusion, fainting and even death. There are many situations in which this can occur; for example:

  • Workers breathing in confined spaces where replacement air is inadequate
  • Oxygen consumption by biological processes in sewers, storage tanks, storm water drains, wells etc.
  • Fermentation in agricultural silos or in brewing processes
  • Certain goods in cargo containers
  • Vessels that have been completely closed for a long time (particularly those constructed of steel) since the process of rust formation on the inside surface consumes oxygen
  • Increased levels of carbon dioxide from wet limestone chippings associated with drainage operations
  • Combustion operations and work such as welding and grinding
  • Displacement of air during pipe freezing, for example, with liquid nitrogen
  • Purging of a confined space with an inert gas to remove flammable or toxic gas, fume, vapour or aerosols
TSI Dustrak

TSI Dustrak

The COSHH definition of a substance hazardous to health includes dust of any kind when present at a concentration in air equal to or greater than 10 mg/m3 8-hour TWA of inhalable dust or 4 mg/m3 8-hour TWA of respirable dust. This means that any dust will be subject to COSHH if people are exposed above these levels. Some dusts have been assigned specific Workplace Exposure Limits (WELs) and exposure to these must comply with the appropriate limit.

Most industrial dusts contain particles with a wide range of size, mass and chemical composition. As a result, their effects on human health vary greatly. However, the Health & Safety Executive (HSE) distinguishes two size fractions for limit-setting purposes termed ‘inhalable’ and ‘respirable’.

Inhalable dust approximates to the fraction of airborne material that enters the nose and mouth during breathing and is therefore available for deposition in the respiratory tract. Respirable dust approximates to the fraction that penetrates to the gaseous exchange region of the lungs. Where dusts contain components that have their own assigned WEL, all the relevant limits should be complied with.

The financial justification for instrument hire
For most of us, when we need something, assuming funds are available, we buy it. At Ashtead Technology, we challenge that assumption; unless the required instrument is either very low cost or likely to be deployed on a frequent basis, it rarely makes sense to purchase the equipment. There are many reasons for this, but the most important is of course financial, however, operational staff are not always aware of the full cost of purchase, because the detail is hidden in the company’s accounts.

Capital purchases are generally written off in the company accounts over a 3, 4 or 5 year period. This means that the cost of ownership is at least 20% of the capital cost per year and possibly over 33%. However, there are of course other costs of ownership – most instruments require regular maintenance and calibration which itself involves further costs both in terms of materials and labour. A gas analyser, for example, would require calibration gases and associated valves and safety equipment; trained staff would be required to ensure that the instrument is calibrated correctly, and consumables such as filters and replacement gases would be required. The same issues arise with other types of instrumentation; all of which require maintenance by suitably trained and qualified staff. Consequently, the annual cost of instrument ownership can easily exceed 50% of the purchase cost.

Another significant financial cost is the ‘opportunity cost’ of the money that is tied up in a purchase; capital expenditure on equipment represents money that could have been used for other purposes – for investing in raw materials, staff, training, marketing, new premises etc. Alternatively that money could have been invested and delivered a return.

In addition to the financial justification, there are many more reasons to hire…

Renting provides appropriate technology
Once an instrument is purchased, the company is committed to that technology for the next few years and this can be a major disadvantage. For example, if a company purchases a PID gas detector for the measurement of solvents, it may find later that there is also a requirement to monitor methane, and the PID would not be suitable for this, so a second analyser would be necessary; an FID for example. Similarly, the company may discover at a later date that solvent speciation is necessary, which again, the PID would fail to achieve.

The same principle applies to other applications. For example, if a basic infrared camera is purchased and it later transpires that higher resolution images are required, a second more expensive camera would be necessary.

From a corporate perspective, instrument purchase can have negative implications because instruments are often shared amongst different departments and between different sites. However, it is unlikely that one technology or one particular instrument is able to meet everybody’s needs, so it is likely that each person will seek to acquire their own instrument; firstly to ensure that they get the kit that they need, but also so that their access to instrumentation is not limited because it is in use elsewhere. If each person is allowed to purchase their own kit; whilst this might be an extremely costly option, it does at least encourage ‘ownership’ so that the equipment is properly maintained. In contrast, shared ownership often results in poor maintenance because none of the staff take responsibility for ensuring that the equipment is serviced and maintained correctly.

Renting instrumentation ensures that all staff have continual access to a range of different technologies, so they do not have to ‘make do’ with whatever happens to be available at the time they need it. If a company has purchased an instrument, its staff are more likely to use it ‘because it is there’ rather than because it is the most appropriate technology.

Renting provides access to new technology
One of the problems with buying an instrument is that your technology is then stuck in a moment of time; inevitably new instruments are developed that are better than their predecessors, but once an instrument has been purchased it is not possible to take advantage of new technology. In contrast, with the benefits of scale, Ashtead is able to continually invest in new technology so that the rental fleet provides access to the latest technology and customers are therefore able to choose the instruments that best meet their needs.

Renting eliminates storage and maintenance costs
One of the common features of all instruments is that they require regular maintenance and in many cases calibration. This is often a skilled activity that requires training and appropriate equipment. Ashtead Technology’s engineers are therefore equipped with all of the necessary equipment to service and maintain every instrument in the rental fleet. They are also trained by manufacturers, so that all instruments can be delivered tested and ready for immediate use. Storage can also represent a cost for the larger pieces of equipment, especially if it is not possible to store the instruments in the same location as the main users.

Technical support from rental companies
Instrumentation is constantly evolving; newer instruments are usually more accurate, more sensitive, faster, lighter, and easier to use. However, the array of instruments available can be bewildering so it is often helpful to discuss options with an Ashtead Technology engineer before making a choice, and then after the instrument is delivered, many customers value telephone support during the setup and operation of the instrument.

Summary
The basic premise behind Ashtead Technology’s business is an intense focus on providing customers with exactly the right equipment at the precise moment that they need it. We therefore seek to become our clients’ instrumentation partner; saving them time and money, and ensuring that they always have access to the best available technologies. This is achieved by:

  • Continually searching the market, looking for the best technologies from the world’s leading suppliers
  • Utilising expert knowledge and buying power to ensure that our fleet of instruments includes a broad selection of the best available technologies
  • Manufacturer training for our engineers
  • Investing in the equipment, spares and consumables for servicing, calibrating and maintaining the entire instrumentation fleet

We invest in these measures so that our clients don’t have to.


Germany lowers biogas formaldehyde emissions

23/12/2013

Power generation from Germany’s enormous biogas industry produces emissions to air that are regulated by the Technical Instructions on Air Quality Control (TA Luft). As part of the approval process, the emissions from each plant have to be tested every three years. Formaldehyde is one of the pollutants of greatest concern because of its carcinogenicity and the TA Luft emission limit is 60 mg/m³. However, the German Government has also created a financial incentive scheme to encourage process managers to lower their formaldehyde emissions to below 40 mg/m³. To be eligible for the EEG (Erneuerbare Energien Gesetz) scheme, plants must be tested every year.

VDI_TestSiteFormaldehyde (HCHO) can be difficult to measure in hot, wet emissions, not least because it would dissolve in condensate if the sample gas is allowed to cool. Test engineers in Germany have therefore deployed portable (DX 4000 and CX4000 from Gasmet) FTIR analyzers to measure formaldehyde, and a number of systems are currently in use across Germany.

Background
The biogas industry in Germany has grown enormously in recent years; in 1992 there were 139 biogas plants in the country, but by the end of 2013 there will be almost 8,000 with an electrical capacity of about 3,400 MW – sufficient for the energy needs of around 6.5 million households. Initially, biogas plants were built to handle the by-products of human and animal food production as well as agricultural waste, but with government incentives to generate renewable energy, farmers are now growing crops such as maize specifically for energy production.

Biogas is produced by anaerobic digestion with anaerobic bacteria or fermentation of biodegradable materials. The main constituent gases are methane and carbon dioxide, with small amounts of hydrogen sulphide and water. The products of biogas combustion are mostly carbon dioxide and water, but the combustion of biogas also produces formaldehyde.

Biogas-fuelled combined heat and power (CHP) plants are becoming a very popular source of renewable energy in many countries because they provide a reliable, consistent source of energy in comparison with wind and solar power. In addition to the renewable energy that these plants produce; the fermentation residue is a valuable product that can be used as a fertiliser and soil conditioner for agricultural, horticultural and landscaping purposes.

Exhaust gas tests
The exhaust emissions of each biogas plant are tested every three years for substances hazardous to air quality, such as particulates, carbon monoxide, nitrogen oxides, sulphur dioxide and formaldehyde. Most of these parameters can be measured on-site with portable equipment. However, in the early years and still to this day, the complexity of formaldehyde analysis has necessitated sampling and laboratory analysis – a time-consuming and costly activity.

FTIR_DX4000

FTIR_DX4000

In 2007 Wolfgang Schreier from the environmental analysis company RUK GmbH (now part of the SGS Group) started working on the use of portable FTIR gas analysers for formaldehyde analysis. The FTIR analysers are manufactured by Gasmet (Finland) and supplied in Germany by Ansyco GmbH, a Gasmet group company.

FTIR analysers are able to qualitatively and quantitatively analyse an almost endless number of gas species. However, Wolfgang Schreier says: “The Gasmet units are primarily employed for the measurement of formaldehyde, and whilst they are able to measure other parameters of interest such as CO, NOx and Methane, they are not yet certified for doing so in the emissions of biogas plants, unless an internal validation has been undertaken.

“The DX4000 proved to be the ideal instrument for this application because it samples at high temperatures (above 180 Deg C) so formaldehyde cannot dissolve in condensate, and the instrument provides sensitive, accurate, reliable real-time formaldehyde measurements – no other portable analyser is able to achieve this.

“Importantly, the DX4000 is also robust and weighing just 14kg, it is easy to transport from site to site. In addition to a heated sample line, the only other accessory is a laptop running Gasmet’s Calcmet™ software.”

In contrast with the portable FTIR, it is typical for the results of laboratory gas analysis to become available around 2 weeks after sampling. This highlights a further benefit of the direct-reading instrument; real-time results enable plant managers to adjust their process in order to improve efficiency and minimise the emissions of formaldehyde and other gases.

Ansyco’s Gerhard Zwick says: “We hope that the other measurements that are possible with the Gasmet FTIR will also soon be accepted. A new VDI method (VDI 3862-8) for the measurement of formaldehyde by FTIR is being established and this is likely to be published at the beginning of 2014.

“The preparation of this standard involved rigorous field tests with 5 Gasmet FTIR analysers at a live biogas plant. During testing, samples were taken for analysis according to the existing standard laboratory methods and the results showed that portable FTIR produced even better results than lab analysis.”

Formaldehyde reduction incentive
The bonus is paid to the operators of biogas plants which are subject to approval by the Federal Immission Control Act if certain conditions are met. Measurements to demonstrate the effectiveness of emission reduction have be taken each year by an organisation which is approved according to § 26 of the Act.

While the emission limit for formaldehyde is 60 mg/m3, according to the EEG legislative, the plant operator receives a bonus of 1 cent per kW when formaldehyde emission levels are below 40 mg/m3, with simultaneous fulfilment of the emission limits for nitrogen monoxide and nitrogen dioxide (combined), and for carbon monoxide.

With the benefit of real-time readings from the FTIR, process operators are able to employ process control measures to alter formaldehyde emissions. However, this may also affect the efficiency of the combustion process or the concentrations of other limited gases. In addition, it is now commonplace for modern plants to use a catalyst for formaldehyde emission reduction.

Summarising Gerhard Zwick says: “The standard formaldehyde emissions monitoring package consists of a Gasmet DX4000 analyser and a heated sampling system, so no adaptations were necessary for the measurement of biogas emissions.

“We have now supplied instruments to most of the key testing organisations as well as motor and system manufacturers in Germany. Happily, the feedback has been extremely positive because, as a portable analyser, the Gasmet FTIR systems are able to test more plants, more quickly, and this lowers costs.”