Keep making the tablets!

08/05/2018
This article shows how valuable manufacturing production line downtime in the pharmaceutical industry can be reduced by ensuring predictive maintenance of tablet making machinery using Harting’s MICA industrial computing platform.

Introduction
Harting recently challenged postgraduate students from the Centre for Doctoral Training in Embedded Intelligence at Loughborough University to investigate practical application solutions where MICA – the company’s innovative open platform based ruggedised industrial edge computing device – could be applied to the benefit of manufacturing. Simple seamless integration within existing established production processes was the target, based on the concept of machine predictive maintenance.

The key objective was to achieve immediate productivity improvements and return on investment (RoI), thus satisfying the increasing trend for Integrated Industry 4.0 implementation on the factory floor. One such proposal was suggested for volume manufacturers in the pharmaceutical industry: in particular, those companies manufacturing tablets using automated presses and punch tools.

Data from these machines can be collected using passive UHF RFID “on metal” transponders which can be retrofitted to existing tablet press machines and mounted on the actual press-die/punch tools. The RFID read and write tags can record the pressing process, i.e. the number of operations performed by a particular press die, plus any other critical operating sensor-monitored conditions. The system can then review that data against expected normal end-of-life projected limits set for that die.

Such data can be managed and processed through Harting’s MICA edge computing device, which can then automatically alert the machine operator that maintenance needs to take place to replace a particular die-set before it creates a catastrophic tool failure condition and breakdown in the production line – which unfortunately is still quite a common occurrence.

Open system software
MICA is easy to use, with a touch-optimised interface for end users and administrators implemented entirely in HTML5 and JavaScript. It provides an open system software environment that allows developers from both the production and IT worlds to quickly implement and customise projects without any special tools. Applications are executed in their own Linux-based containers, which contain all the necessary libraries and drivers. This means that package dependencies and incompatibilities are eliminated. In addition, such containers run in individual “sandboxes” which isolate and secure different applications from one another with their own separate log-in and IP addresses. As a result, there should be no concerns over data security when MICA is allowed access to a higher-level production ERP network.

MICA is already offered with a number of containers such as Java, Python C/C++, OPC-UA, databases and web toolkits, all available on free download via the HARTING web site. As a result, users should be able to download links to the operating software system compatible with an existing machine, enabling full 2-way communication with the MICA device. Relaying such manufacturing information, which can comprise many gigabytes of data in the course of a day, directly to the ERP would normally overwhelm both the network and the ERP. With the MICA, this data stream is buffered directly onto the machine and can be reduced to just essential business-critical data using proven tools from the IT world.

The resultant improvements in productivity include:

– Less downtime reduces the amount of money lost during unforeseen maintenance of damaged punch tools.
– Individual punch identification will help in removing a specific punch, once it has reached its pre-set operational frequency working limit.
– A digital log of each punch and the number of tablets that it has produced is recorded. This provides vital information for GMP (Good Manufacturing Practice) regulators such as the MHRA (Medicines & Healthcare products Regulatory Agency) or the FDA (Food & Drug Administration).

A further benefit is that MICA is very compact, with DIN rail mounting fixing options that allow it to be easily accommodated inside a machine’s main control cabinet.

@HARTING #PAuto #Pharma @CDT_EI

Electric vehicle pioneer favours wireless test rigs.

12/02/2018

A company that has been at the forefront of electric vehicle design and development for over 20 years has supplied a test rig based on a wireless torque sensor to a world renowned British University automotive research facility.

Tirius has been built on pioneering work on an all-electric single seat racing car and a series of record breaking vehicles. It continues to bring the latest technology to clients in the form of product design and development and the provision of its range of electric drive systems.

Head of Tirius, Dr Tim Allen, explains: “We are helping the university’s research team develop electric drive train technology typically found in ‘A-Class’ cars, for example urban runarounds and small family hatchbacks. Specifically we are currently looking at permanent magnet traction motors in a number of sizes and configurations, with a view to optimising electronic control for each motor type.”

The research involves running each motor on a test rig through its full output range and mapping its torque output at many points to build up a performance profile. The design of the controller can then be matched to the motor characteristics. This should be able to ensure that the motor runs in its optimum operating zone as much as possible, maximises motor life and regenerative braking, minimising wear, and is as energy efficient as possible.

The design of the test rig is in fact quite simple, thanks to the torque sensor, a TorqSense, as made by Sensor Technology.

“We are pleased to promote TorqSense and the guys at Sensor Technology,” says Tim. “We have been using their kit for many years and in many different roles. The bottom line is that they are easy to use, accurate and great value – partly because they can be re-used once their original project has been completed.

TorqSense is a good choice for this work because its non-contact operation allows rapid set-up during the profile building test runs. It also means extra drag forces are not added to the system, so measurements represent true values and calculations are therefore straightforward.”

TorqSense uses two piezo-electric combs which are simply glued to the drive shaft at right angles to one another. As the shaft turns it naturally twists along its length very slightly and in proportion to the torque, which deforms the combs changing their piezo-signature. This change is measured wirelessly by a radio frequency pick up and is a measure of the instantaneous torque value.

Its data is output to a very user-friendly computer screen which uses graphics to aid easy interpretations. In fact the display on the computer is similar to a car’s dashboard, so most people understand it intuitively. Further, the data is automatically logged for further analysis.

Tim again: “With our type of research work there are some potential errors that we have to look out for, including time-based zero-drift, bending moments on the shaft, bearing losses, temperature fluctuations etc. These are easily accounted for with TorqSense-based test rigs. Normally you have to account for the drag caused by the slip rings, but the wireless TorqSense does not use them, so that is one less calculation – and one less fiddly fixing task.

“A great benefit of TorqSense is the ease with which it can be mounted and dismounted, which simplifies research work where frequent reconfiguring is required.”

The University project will take two or three years to complete and the TorqSense test rig will be worked hard during this time. “At the end of the work, I have no doubt that the TorqSense will be reused in a new research program. It’s what we do in-house at Tirius.”

 

@sensortech #PAuto

The ‘ins and outs’ of air quality monitoring!

20/02/2017
The British National Institute for Health and Care Excellence (NICE) recently issued draft guidance on ‘Air pollution – outdoor air quality and health.’ 

Here, Jim Mills, Managing Director of Air Monitors Ltd, explains why there will need to be more funding for monitoring if the mitigation measures mentioned in the guidance are to be implemented effectively. Jim also highlights the close relationship between outdoor air quality and the (often ignored) problems with indoor air quality.

The NICE guidelines are being developed for Local Authority staff working in: transport, planning, air quality management and public health. The guidance is also relevant for staff in healthcare, employers, education professionals and the general public.

Covering road-traffic-related air pollution and its links to ill health, the guidelines aim to improve air quality and so prevent a range of health conditions and deaths. Unfortunately, on the day that the draft guideline was published, most of the national media focused on one relatively minor recommendation relating to speed bumps. ‘Where physical measures are needed to reduce speed, such as humps and bumps, ensure they are designed to minimise sharp decelerations and consequent accelerations.’ Measures to encourage ‘smooth driving’ are outlined; however, the guidelines also address a wide range of other issues, which, in combination, would help tackle urban air pollution.

Public sector transport services should implement measures to reduce emissions, but this is an area that could involve the greatest financial cost.

Many local authorities would doubtless comment that they are already implementing many of the guideline recommendations, but refer to budgetary constraints on issues that involve upfront costs. This issue was raised on BBC Radio 4 when the issue was discussed on 1st December.

AQMesh Pod

AQMesh Pod

The NICE guidelines recommend the inclusion of air quality issues in new developments to ensure that facilities such as schools, nurseries and retirement homes are located in areas where pollution levels will be low. LAs are also urged to consider ways to mitigate road-traffic-related air pollution and consider using the Community Infrastructure Levy for air quality monitoring. There are also calls for information on air quality to be made more readily available.

LAs are also being urged to consider introducing clean air zones including progressive targets to reduce pollutant levels below the EU limits, and where traffic congestion contributes to poor air quality, consideration should be given to a congestion charging zone. The guidelines also highlight the importance of monitoring to measure the effects of these initiatives.

As part of the consultation process, NICE is looking for evidence of successful measures and specifically rules out “studies which rely exclusively on modelling.”

In summary, all of the initiatives referred to in the NICE report necessitate monitoring in order to be able to measure their effectiveness. However, most LAs do not currently possess the monitoring capability to do so. This is because localised monitoring would be necessary before and after the implementation of any initiative. Such monitoring would need to be continuous, accurate and web-enabled so that air pollution can be monitored in real-time. AQMesh is therefore the ideal solution; small, lightweight, quick and easy to install, these air quality monitors are able to monitor all the main pollutants, including particulates, simultaneously, delivering accurate data wirelessly via the internet.

Whilst AQMesh ‘pods’ are very significantly lower in cost both to buy and to run than traditional reference stations, they still represent a ‘new’ cost. However any additional costs are trivial in comparison with the costs associated with the adverse health effects caused by poor air quality, as evidenced in the recent report from the Royal College of Physicians.

Inside Out or Outside In?

Fidas® Frog

Fidas® Frog

The effects of air pollution are finally becoming better known, but almost all of the publicity focuses on outdoor air pollution. In contrast, indoor air quality is rarely in the media, except following occasional cases of Carbon Monoxide poisoning or when ‘worker lethargy’ or ‘sick building syndrome’ are addressed. However, it is important to understand the relationship between outdoor air quality and indoor air quality. Air Monitors is currently involved in a number of projects in which air quality monitoring is being undertaken both outside and inside large buildings, and the results have been extremely interesting.

Poorly ventilated offices tend to suffer from increased Carbon Dioxide as the working day progresses, leading to worker lethargy. In many cases HVAC systems bring in ‘fresh’ air to address this issue, but if that fresh air is in a town or city, it is likely to be polluted – possibly from particulates if it is not sufficiently filtered and most likely from Nitrogen Dioxide. Ventilating with outdoor air from street level is most likely to bring air pollution into the office, so many inlets are located at roof level. However, data from recent studies indicate that the height of the best air quality can vary according to the weather conditions, so it is necessary to utilise a ‘smart’ system that monitors air quality at different levels outside the building, whilst also monitoring at a variety of locations inside the building. Real-time data from a smart monitoring network then informs the HVAC control system, which should have the ability to draw air from different inlets if available and to decide on ventilation rates depending on the prevailing air quality at the inlets. This allows the optimisation of the internal CO2, temperature and humidity whilst minimising the amount of external pollutants brought into the indoor space. In circumstances where the outside air may be too polluted to be used to ventilate, it can be pre-cleaned by scrubbing the pollutant gases in the air handling system before being introduced inside the building.

Fidas200The implementation of smart monitoring and control systems for buildings is now possible thanks to advances in communications and monitoring technology. AQMesh pods can be quickly and easily installed at various heights outside buildings and further units can be deployed internally; all feeding near-live data to a central control system.

Another example of indoor air quality monitoring instrumentation developing from outdoor technology is the ‘Fidas Frog,’ a new fine dust aerosol spectrometer developed by the German company Palas. The Frog is an indoor, wireless, battery-powered version of the hugely popular, TÜV and MCERTS certified Fidas 200. Both instruments provide simultaneous determination of PM fractions, particle number and particle size distribution, including the particle size ranges PM1, PM2.5, PM4, PM10 and TSP.

Evidence of outdoor air pollution contaminating indoor air can be obtained with the latest Black Carbon monitors that can distinguish between the different optical signatures of combustion sources such as diesel, biomass, and tobacco. The new microAeth® MA200 for example, is a compact, real-time, wearable (400g) Black Carbon monitor with built-in pump, flow control, data storage, and battery with onboard GPS and satellite time synchronisation. Samples are collected on an internal filter tape and wireless communications are provided for network or smartphone app integration and connection to other wireless sensors. The MA200 is able to monitor continuously for 2-3 weeks. Alternatively, with a greater battery capacity, the MA300 is able to provide 3-12 months of continuous measurements.

In summary, a complete picture of indoor air quality can be delivered by a combination of AQMesh for gases, the Palas Frog for particulates and the microAeth instruments for Black Carbon. All of these instruments are compact, battery-powered, and operate wirelessly, but most importantly, they provide both air quality data AND information on the likely source of any contamination, so that the indoor effects of outdoor pollution can be attributed correctly.

@airmonitors #Environment #PAuto @_Enviro_News


Treating wastewater as a resource.

27/09/2016
A number of British landfill operators are turning wastewater into a resource by utilising OTT monitoring and control systems to manage the irrigation of Willow crops (for renewable energy generation) with pre-treated effluent.

Background
Leachate from landfill sites represents a significant potential environmental liability, extending long into the future after a landfill site has closed. Conventional treatment and disposal options involve biological treatment and consented discharge to either the wastewater treatment network or to the environment. Alternatively, effluent may be collected by tanker for treatment and disposal off-site. However, to improve sustainability and broaden the treatment options, work initiated in the 1990s developed an approach that sought to use effluent as a source of nutrients and water for a Short Rotation Coppice (SRC) crop planted upon the restored landfill.

Willows fed on wastewater!

Willows fed on wastewater!

Following the success of early trials, the Environment Agency published a Regulatory Position Statement in 2008, which said: ‘SRC as part of a landfill leachate treatment process… is a technique (that) can be an environmentally acceptable option if managed appropriately.’

Early systems were operated and managed manually but with the addition of OTT sensors, telemetry and control systems, the process was automated to optimise irrigation and maximise both the disposal of effluent and biomass yield.

Willow SRC has become increasingly popular in environmental restoration work, providing a cost-effective material for stabilisation and reclamation of disturbed landscapes, bioremediation and biomass production.

SRC involves the planting of high yielding varieties of willow at a high density, typically 15,000 plants per hectare. The crop can be expected to last for around 30 years, with harvesting taking place every 3-5 years, and yields varying from 8 to 18 tonnes of dry woodchip per hectare per year. Willow grows quickly and has a particularly high demand for water, so it is ideal for the disposal of large volumes of treated effluent. In addition, the high planting density results in the development of a dense root hair system; effectively creating a biological filter for the treatment of organic compounds and the absorption of nutrients and some heavy metals. Soil fauna help to break down the effluents applied to the crop and soil particles control the availability of nutrients to the willow.

Monitoring and control
In early schemes, irrigation was managed manually on a timed basis with irrigation quantities based on external estimates of evapotranspiration. However, increased levels of monitoring and control are now possible. OTT’s Matthew Ellison explains: “The key objective is to supply the crop with an optimised amount of water, whilst minimising the requirement for staff on site. Too much irrigation would cause run-off and too little would under-utilise the treated effluent and result in poor growth conditions which would affect yield and potentially threaten the crop.

Soil moisture sensors

Soil moisture sensors

“An on-site weather station feeds local weather data to the system which uses crop data to predict evapotranspiration that is used to determine irrigation rates. Soil moisture sensors then check that soil moisture status is correct. Other sensors monitor the performance of the system; checking irrigation feed reservoir level, in-pipe pressure and there are sensors to check flow rates from the drip-feed irrigation. This communication capability is made possible with OTT’s Adcon Telemetry radio network.

“Our latest monitoring and control equipment automates the management of the system for unattended operation and staff are only required by exception. This means that the system is able to operate autonomously, delivering regular data reports, and staff are notified by email or text if alarm conditions occur.”

Emphasising the advantages of controlling the entire network, Matthew adds: “This system facilitates the ability to control and synchronise the main pump, and to open and close the valves at each irrigation zone.”

The latest OTT monitoring and control systems include:

  1. Soil moisture sensors
  2. Irrigation tank level sensors
  3. Irrigation function check sensors
  4. Pipe valves and pressure sensors
  5. Automatic weather station (to calculate local evapotranspiration)
  6. Radio telemetry
  7. ADCON Gateway and PC running addVANTAGE software
  8. Internet connectivity for remote log in

Summary
Looking back over a number of SRC projects, Stephen Farrow one of the instigators of this approach in the UK, and now an Independent Consultant says: “When viewed practically, environmentally and commercially, experience has demonstrated the viability of the overall approach.

“It is also clear that process optimisation with relatively low cost investment in OTT’s monitoring and control equipment has significantly added to the support functionality in terms of both operation and regulatory management.’’

OTT’s Matthew Ellison agrees, adding: “SRC clearly offers a sustainable option for effluent treatment, with highly positive effects on carbon footprint and biodiversity.

“In addition to the environmental benefits, process automation has significantly reduced labour requirements and helped to demonstrate compliance with the site-specific requirements of the Environment Agency.”


Brexit woes continue.

02/08/2016
This is a short piece from Nick Denbow, in the July Issue of Industrial Automation Insider*  on the aftermath of the Brexit referendum. See our earlier piece “Nobody knows!” (30/6/2016)

The first thing that Great Britain’s new government, under Prime Minister Theresa May and Foreign Secretary Boris Johnson, did was to quash talk of a new referendum that might end Brexit before it actually gets started. The government says it plans to go ahead with the exit of Great Britain from the European Union, despite angry words from Scotland and Northern Ireland, both of which client states voted emphatically to stay in the EU.

zollschildThis impacts manufacturing and automation system companies in quite a few different ways. The membership of Great Britain and Ireland in the EU made it possible to conduct business across country barriers with so much ease that the borders were essentially invisible. Personnel could be sent wherever needed, not where they were citizens. Inventory could be stored anywhere in the EU for shipment anywhere in the EU and things like FAT tests and FEED projects could be done anywhere without regard for borders.

“The connection of just about anything via the Internet is expected to grow rapidly through 2016 and well into the future, significantly boosting opportunities for tech specialists, particularly cybersecurity professionals. Complicating this is the recent investment by the EU of US $500 million to fund research into cybersecurity, and its call for industry to invest at least three times that amount to protect the EU economy from cyberattacks. Under the plan, the European Commission (EC), the EU’s executive body, has launched a public-private partnership under the European Cyber Security Organization, which calls for EU member states and cybersecurity bodies, including market players, research centers, and academia, to strengthen their cooperation and pool their knowledge to increase Europe’s cyber resilience. It’s not clear at this point where, or if, the UK would fit into this program.” –Ron Schnieiderman on IEEE Careers site.

This will no longer be true, as Brexit takes hold, and companies are now having to do significant amounts of strategic planning based on this very large Great-Britain-sized hole in the EU. Further, other countries are making noises like they might want to break up the EU entirely, which is a different bucket of fish entirely. European automation companies have prospered because of the borderless and customs-less conditions under which they have worked in the EU.

It will be interesting to see how this unfolds, especially with Scotland making independence noises again, less than two years after a failed independence plebiscite.

• The Insider’s Health Watch column also reports on some Brexit related influences!
• Coincidentally the ever-interesting BMON daily had a popular piece on the possible effects of the Brexit decision on the internet – specifically the use of cookies –  The Future for EU and UK Laws on Cookies after ‘Brexit’ (3/7/2016)

*The Automation INSIDER is an independent monthly e-mail newsletter and editorial report on the continuing evolution, development and convergence of industrial automation, instrumentation and process control technologies worldwide for automation and process control system users, designers, installers and suppliers. It is compiled by Walt Boyes.


Complete Tensile Monitoring System Delivered in Under 1 Week.

12/06/2016
“We can deliver a complete tensile monitoring system in under 1 week! Don’t take our word for it, take Clark Masts’!”

Challenge – To Measure Larger Loads in Stainless Steel Guy Cables with a Super-Fast Delivery.

Clark Masts, a telescopic and sectional mast manufacturer, needed a way to accurately monitor the tensile stress in the guy cables of their newly developed super-heavy telescopic masts and they needed it urgently.

With head loads of up to 500kg and extended heights of up to 34m, the measuring instrument needed to accurately handle the larger head loads, taller heights AND be delivered in under 1 week!

“For our new larger mast range with large head loads we needed an instrument with a higher range up to 500kg and in a hurry, so that’s how we decided upon your product.” Gwyn Evans, Clark Masts Systems Limited. Here’s the story.

Cable-and-Close-Up-of-Load-Cell1

DBBSM S-beam load cell and TR150 handheld indicator make a fast & accurate tensile monitoring system.

DBBSM S-Beam Load Cell to the Rescue!!

  • Capacities: 0-1kg up to 0-30,000kg
  • Output: 2mV/V to 2.7mV/V
  • High Accuracy: <±0.03%
  • Customised Versions Available
  • Rod End Bearings & Load Buttons Available
  • Delivery Under 1 Week!
Load-Cell-on-guy-rope-cu-190x300

Tensile strength on guys

With huge capacities of up to 30,000kg and an accuracy of <±0.03% of the rated capacity, the highly accurate DBBSM S-beam load cell really is the knight in stainless steel armour. Not only can it efficiently handle the larger loads in the guys, it can also be supplied in less than 1 week! Its tough construction makes it ideal to use in the harsh outdoor conditions on the guy cables.

Rod Ends and Mounting Accessories
Clark Masts were supplied with a DBBSM-1000kg S-beam load cell and additional rod end bearings to enable effective tensile testing of the larger loads in the guy cables. The rod end bearings serve to:

  • Centralise the Tensile Force Through the Primary Axis.
  • Reduce any Extraneous Forces.
  • Improve Overall Performance and Accuracy of the Load Cell.

“By using the DBBSM S-beam load cell with the rod end bearings, Clark Masts increased the overall efficiency of their tensile monitoring system.” said Robert Davies, Applied Measurements‘ Production Director.

TR150 Handheld Display
Along with the DBBSM-1000kg s-beam load cell they also supplied a 7 digit LCD handheld indicator. The TR150 handheld indicator has an IP65 rating making it a perfect partner to the DBBSM S-beam load cell, as both can be used in the harsh outdoor environments of Clark Masts tensile testing. Its dual range function means the display can be calibrated in 2 different engineering units i.e. newtons and kg or can be used to calibrate 2 separate load cells using just 1 display. It is powered by 2x AA batteries which can last up to 450 hours of continuous use in low power mode.

Their DBBSM S-beam load cell can be supplied in less than 1 week and with our ex-stock TR150 handheld indicators mean we can offer a complete tensile monitoring system in under 1 week!

@AppMeas #Pauto

Connection allows expansion modules be added in seconds.

12/01/2016

Peak Production Equipment manufactures a comprehensive range of test equipment, from simple test boxes used by subcontract manufacturers to stand-alone high specification test racks and systems used in the aerospace and other industries.

HartingandPeak

Harting’s har-flex® PCB connector system is a key component in a new versatile interface developed by Peak.

A key element of the company’s offering is the fact that all its test fixtures and interfaces are designed and manufactured in-house, which represents an increasing challenge because of the growing demand for lower-cost test solutions from customers. To accommodate this requirement, Peak needed a robust, computer-controlled interface board containing relay controls and digital inputs and outputs which could be configured flexibly to accept different customers’ test scenarios.

As such boards are not available in the marketplace at a reasonable cost, Peak took on the challenge of producing the board in-house.

HAR_FlexPCBHarting’s har-flex® family is a general-purpose PCB connector series based on a 1.27 mm grid with SMT termination technology. With its straight, angled and cable variants, har-flex® provides connectivity solutions for many different board-to-board and cable-to-board applications.
The different stacking heights of the mezzanine connectors and the flexible IDC connector cable lengths offer a high degree of freedom to the system design. A broad choice of configurations between six and 100 contacts in even-numbered positions is available.

The system had to be compact, low cost, expandable, robust and reliable and cover a wide voltage range, while at the same time incorporating multiple control interfaces, with one interface controlling a range of expansion modules. It also had to be compatible with multiple software drivers, and all the components used in its construction had to be fully traceable.

The solution arrived at by Peak engineers was based around a master interface PCB which acts as the key interface between the controlling PC and all the expansion modules. It is fitted with three interfaces: USB, Ethernet and RS232. The board can be used as a stand-alone controller, or it can be “piggy-backed” onto any expansion module or alternatively connected to expansion modules using a ribbon cable for maximum flexibility. The PCB assembly has a high speed I2C interface, 23 channels of digital I/O and 256 kbits of on-board memory, all controlled by any one of the three control interfaces. The PCB has a wide voltage input range from 7 to 36 V DC, and measures only 100 × 50 mm.

The on-board memory allows storage of data such as test cycles and date of manufacture, while the digital I/O is useful for monitoring sensor inputs and switching indicators and additional relays. The I2C interface is used for all expansion module communications, but can also be used as a stand-alone interface.

A 16-channel high-power SPDT relay board is used as the expansion module. This contains 16 SPDT 12 A, 250 V AC relays for general power switching. The relays can be switched and the status can be read back by the master interface PCB. All relays have LED indication, and the PCB has the same wide voltage input range as the master interface board (7-36 V DC) and measures 100 × 220 mm. Although the relay board can be used for general switching inside test fixtures and systems, it can also be used in many other applications.

HARTING har-flex® connectors were selected for board connectivity due to their small size, robustness and flexibility. They can be used as board-to-board connectors, allowing the master interface PCB to be connected to any expansion module directly; alternatively, the same connector can have a ribbon cable connected to connect subsequent expansion modules.

The small size of the connector allowed Peak to increase the pin count, allowing power lines to be commoned up and all communications and power to be passed down a single ribbon cable. As a result, expansion modules could be added in a matter of seconds.

The har-flex® family is a general-purpose PCB connector series based on a 1.27 mm grid with SMT termination technology. With its straight, angled and cable variants, har-flex® provides connectivity solutions for many different board-to-board and cable-to-board applications.

The different stacking heights of the mezzanine connectors and the flexible IDC connector cable lengths offer a high degree of freedom to the system design. A broad choice of configurations between six and 100 contacts in even-numbered positions is available.