Connection allows expansion modules be added in seconds.

12/01/2016

Peak Production Equipment manufactures a comprehensive range of test equipment, from simple test boxes used by subcontract manufacturers to stand-alone high specification test racks and systems used in the aerospace and other industries.

HartingandPeak

Harting’s har-flex® PCB connector system is a key component in a new versatile interface developed by Peak.

A key element of the company’s offering is the fact that all its test fixtures and interfaces are designed and manufactured in-house, which represents an increasing challenge because of the growing demand for lower-cost test solutions from customers. To accommodate this requirement, Peak needed a robust, computer-controlled interface board containing relay controls and digital inputs and outputs which could be configured flexibly to accept different customers’ test scenarios.

As such boards are not available in the marketplace at a reasonable cost, Peak took on the challenge of producing the board in-house.

HAR_FlexPCBHarting’s har-flex® family is a general-purpose PCB connector series based on a 1.27 mm grid with SMT termination technology. With its straight, angled and cable variants, har-flex® provides connectivity solutions for many different board-to-board and cable-to-board applications.
The different stacking heights of the mezzanine connectors and the flexible IDC connector cable lengths offer a high degree of freedom to the system design. A broad choice of configurations between six and 100 contacts in even-numbered positions is available.

The system had to be compact, low cost, expandable, robust and reliable and cover a wide voltage range, while at the same time incorporating multiple control interfaces, with one interface controlling a range of expansion modules. It also had to be compatible with multiple software drivers, and all the components used in its construction had to be fully traceable.

The solution arrived at by Peak engineers was based around a master interface PCB which acts as the key interface between the controlling PC and all the expansion modules. It is fitted with three interfaces: USB, Ethernet and RS232. The board can be used as a stand-alone controller, or it can be “piggy-backed” onto any expansion module or alternatively connected to expansion modules using a ribbon cable for maximum flexibility. The PCB assembly has a high speed I2C interface, 23 channels of digital I/O and 256 kbits of on-board memory, all controlled by any one of the three control interfaces. The PCB has a wide voltage input range from 7 to 36 V DC, and measures only 100 × 50 mm.

The on-board memory allows storage of data such as test cycles and date of manufacture, while the digital I/O is useful for monitoring sensor inputs and switching indicators and additional relays. The I2C interface is used for all expansion module communications, but can also be used as a stand-alone interface.

A 16-channel high-power SPDT relay board is used as the expansion module. This contains 16 SPDT 12 A, 250 V AC relays for general power switching. The relays can be switched and the status can be read back by the master interface PCB. All relays have LED indication, and the PCB has the same wide voltage input range as the master interface board (7-36 V DC) and measures 100 × 220 mm. Although the relay board can be used for general switching inside test fixtures and systems, it can also be used in many other applications.

HARTING har-flex® connectors were selected for board connectivity due to their small size, robustness and flexibility. They can be used as board-to-board connectors, allowing the master interface PCB to be connected to any expansion module directly; alternatively, the same connector can have a ribbon cable connected to connect subsequent expansion modules.

The small size of the connector allowed Peak to increase the pin count, allowing power lines to be commoned up and all communications and power to be passed down a single ribbon cable. As a result, expansion modules could be added in a matter of seconds.

The har-flex® family is a general-purpose PCB connector series based on a 1.27 mm grid with SMT termination technology. With its straight, angled and cable variants, har-flex® provides connectivity solutions for many different board-to-board and cable-to-board applications.

The different stacking heights of the mezzanine connectors and the flexible IDC connector cable lengths offer a high degree of freedom to the system design. A broad choice of configurations between six and 100 contacts in even-numbered positions is available.


Air pollution – the invisible roadside killer.

14/12/2015

The VW emissions scandal has helped to raise awareness of the deadly threat posed by air pollution in many of our towns and cities. In the following article, Jim Mills, Managing Director of Air Monitors, an instrumentation company, explains why diesel emissions will have to be lowered and how the latest monitoring technology will be an essential part of the solution.

Background
The World Health Organisation has estimated that over 500,000 Europeans die prematurely every year as a result of air pollution – especially fine particulates from combustion processes and vehicles. Of these, around 30,000 are in Britain; however, experts believe that the figures could be substantially higher if the effects of Nitrogen Dioxide (NO2) are also taken into consideration.

London Smog - now less visible!

London Smog – now less visible!

Historically, air pollution was highly visible, resulting in air pollution episodes such as the Great London Smog in 1952. However, today’s air pollution is largely invisible (fine particulates and NO2 for example), so networks of sophisticated monitors are necessary.

The greatest cause for alarm is the air quality in our major towns and cities where vehicles (main diesels) emit high levels of NO2 and particulates in ‘corridors’ that do not allow rapid dispersion and dilution of the pollutants. Urban vehicles also emit more pollution than free-flowing traffic because of the continual stopping and starting that is necessary.

As a result of its failure to meet European air quality limits, the Government was taken to the UK Supreme Court in April 2015 by ClientEarth, an organisation of environmental lawyers. In a unanimous judgement against Defra (English Department for Environment, Food and Rural Affairs), the Court required the urgent development of new air quality plans. In September 2015 Defra published its Draft Air Quality Plans, but they have not been well received; respondents have described them as disappointing and unambitious. CIWEM (The Chartered Institution of Water and Environmental Management) , an organisation representing environmental management professionals, for example, said: (the plans) “rely on unfunded clean air zones and unproven vehicle emission standards.”

Some commentators believe that Defra should follow Scotland’s lead, following the publication, in November 2015, of ‘Cleaner Air for Scotland – The Road to a Healthier Future’ (CAFS). Key to this strategy is its partnership approach, which engages all stakeholders. Under CAFS, the Scottish Government will work closely with its agencies, regional transport partnerships, local authorities (transport, urban and land-use planners and environmental health), developers, employers, businesses and citizens. CAFS specifies a number of key performance indicators and places a heavy emphasis on monitoring. A National Low Emission Framework (NLEF) has been designed to enable local authorities to appraise, justify the business case for, and implement a range of, air quality improvement options related to transport (and associated land use).

Traffic-related air pollution
In addition to the fine particulates that are produced by vehicles, around 80% of NOx emissions in areas where Britain is exceeding NO2 limits are due to transport. The largest source is emissions from diesel light duty vehicles (cars and vans). Clearly, there is now enormous pressure on vehicle manufacturers to improve the quality of emissions, but urgent political initiatives are necessary to address the public health crisis caused by air pollution.

A move to electric and hybrid vehicles is already underway and developments in battery technology will help improve the range and performance of these vehicles, and as they become more popular, their cost is likely to lower. The prospect of driverless vehicles also offers hope for the future; if proven successful, they will reduce the need for car ownership, especially in cities, thereby reducing the volume of pollution emitting vehicles on the roads.

Vehicle testing is moving out of the laboratory in favour of real-world driving emissions testing (RDE) which will help consumers to choose genuinely ‘clean’ vehicles. However, the ultimate test of all initiatives to reduce traffic-related air pollution is the effect that they have on the air that people breathe.

Ambient air quality monitoring
Networks of fixed air quality monitoring stations provide continual data across the UK, accessible via the Defra website and the uBreathe APP. Many believe that this network contains an insufficient number of monitoring points because measurement data has to be heavily supplemented with modelling. However, these reference monitoring stations, while delivering highly accurate and precise data, are expensive to purchase, calibrate and service. They also require a significant footprint and mains electricity, so it is often difficult or impossible to locate them in the locations of most interest – the pollution hotspots.

Public sector budgets are under pressure, so the cost of running the national monitoring network and those systems operated by Local Authorities is a constant source of debate. The challenge for technology companies is therefore to develop air quality monitors that are more flexible in the locations in which they are able to operate and less costly in doing so.

Air Monitors’s response

New technology
Air Monitors has developed a small, battery-powered, web-enabled, air quality monitor ‘AQMesh’, which can be quickly and easily mounted on any lamp post or telegraph pole at a fraction of the cost of traditional monitors. Consequently, for the first time ever, it is possible to monitor air quality effectively, where it matters most; outside schools, on the busiest streets and in the places where large numbers of people live and breathe.AQMesh_podAQMesh ‘pods’ are completely wireless, using GPRS communications to transmit data for the five main air polluting gases to ‘the cloud’ where sophisticated data management generates highly accurate readings as well as monitoring hardware performance. In addition, it is now possible to add a particulate monitor to new AQMesh pods.AQMesh does not deliver the same level of precision as reference stations, but this new technology decreases the cost of monitoring whilst radically improving the availability of monitoring data, especially in urban areas where air quality varies from street to street.The flexibility of these new monitors is already being exploited by those responsible for traffic-related pollution – helping to measure the effects of traffic management changes for example. However, this new level of air quality data will also be of great value to the public; helping them to decide where to live, which routes to take to work and which schools to send their children to.

Application for Mass flow measurements for those over 18 years old!

03/03/2015

When thinking of alcoholic products that are produced in Britain, a fine malt Whiskey may spring to mind or perhaps beer brewed in one of the numerous breweries that can be found dotted around the country. How many people however, would immediately think of Vodka?

English_VodkaWell, nestled in the Herefordshire countryside, the family run Chase distillery (entry only to over 18 year olds!) thinks a lot about Vodka, in fact it produces the award winning Chase Vodka which is the World’s first super premium English potato Vodka.

The entire process from seed to bottle takes place on the Chase estate ensuring that a close eye can be kept on all stages from growing the potatoes to distilling and bottling. It was at the distilling stage that Chase was looking for a flowmeter that was capable of measuring the flow rate of fermented potato mash. After careful consideration, they decided on Krohne’s OPTIMASS 1300 Coriolis mass flowmeter.

The fermentation process is started with the mashing of potatoes and the addition of a brewer’s yeast. After about a week, the fermented potato mash is distilled four times in a bespoke copper batch pot and then twice more in a rectification column. It is here that the OPTIMASS 1300 is installed in a vertical pipe run feeding the distillation column. The density of the medium going through the meter can vary from 0.95 to 1.1kg/litre and flows at a rate of 2000 l/hr with pressure of 1BarG at a temperature of 30C.

Krohne_VodkaWith the available space being limited, Chase required a meter that had a small installation envelope, but could still measure accurately and was capable of being CIP cleaned at 65C. The OPTIMASS 1300 has a dual straight tube design which makes it ideal for use in hygienic applications as there are no crevices or bends for bacteria to gather and the meter can be easily drained and cleaned. Due to the hygienic nature of the application the OPTIMASS 1300 was supplied with hygienic fittings and also has all of the necessary hygienic industry approvals.

Prior to installing the OPTIMASS 1300, Chase used a manual method to monitor the flow of fermented potato mash into the distillation column, however they were looking for a mass flow meter to automate the process. The OPTIMASS 1300 has enabled Chase to monitor the feedstock to finished product ratio accurately and since installation it has also reduced production time by highlighting an underperforming feed pump that was increasing the mash charging time which in turn lengthened the production time.

Tim Nolan, engineering manager at Chase is very pleased with the performance of the OPTIMASS 1300, “Installing the KROHNE meter has meant that we can automate the process and ultimately reduce production time.  It also allows us increased flexibility as we can install the meter on other parts of the process to verify efficiency,” he continues, “KROHNE have supplied us with a meter that complies to our hygienic requirements and has proved to be very reliable.”

Initially, the OPTIMASS 1300 will be used with a local display, however in the future it is planned to interface the meter with the PLC using mA outputs to measure volumetric flow, density and temperature.

Chase_Bosca


Modest component growth predicted in Britain!

11/07/2014

British distributors expect modest growth later in the year, even though growth in the Britain and Ireland electronic components markets remains lacklustre, according to the May market statistics released by the Electronic Components Supply Network (ECSN), the professional community for the electronic component supply chain.

Adam Fletcher

Adam Fletcher, Chairman of the ECSN, commented, “Anticipated growth in the second quarter does not appear to have materialised, which has led to a slight increase in inventory. Our distributor members are expecting a modest increase in growth in the second half of the year, which appears to be realistic since no significant events or increased demand drivers are currently visible.” He believes that a very similar pattern is being played out in electronic components markets world-wide.

The full ecsn market statistics are available to all members. They show a slight decline in the Book-to-Bill ratio and in overall bookings compared to April 2014 and also to May 2013. Semiconductors increased slightly over the period, passives declined slightly, emech was flat and component assemblies declined.


Ensuring that necessary dredging mantains water quality!

07/07/2014

Last winter brought unprecedented weather conditions both in Ireland and Britain. In the Read-out offices we were hit by a thunder and lightening storm which played havoc with our electronic equipment and elsewhere in the region the rough seas did incredible damage. In the south-west of England the farms and homes in the Somerset Levels and Moors, a sparsely populated coastal plain and wetland area of central Somerset, was severely hit with incredible flooding. Indeed the effects of this will be felt in the area for many years to come.

levels

This shows the incredible extent of last winter’s flooding with superimposed map showing location of the Somerset Levels and Moors.

A special monitoring system is helping protect water quality on the Somerset Levels and Moors where a major dredging operation is under way following this severe flooding. The system, which was supplied by OTT Hydrometry and installed by Wavelength Environmental, is designed to protect the river ecology by issuing email alerts if water quality deteriorates beyond pre-set conditions. Any such alerts would immediately be relayed to the project team and an assessment of conditions would then be undertaken, so that working practices can be reviewed and continued.

The flood caused extensive damage to properties in the area and many residents had to leave their homes.  Approximately 170 homes and businesses were affected. The Environment Agency estimated there were more than 65 million cubic metres of floodwater covering an area of 65 square kilometres.

Dredgers commenced work at the end of March 2014

Dredgers commenced work at the end of March 2014

On Monday 31st March 2014, three months after the flooding began, dredging work started on the banks of the river Parrett between Burrowbridge and Moorland, just a few minutes from Junction 24 of the M5 in the south west of England. Costing £1 million per mile, 5 miles of river bank will be dredged (3 miles of the river Parrett and 2 miles of the river Tone), based on restoring the river channels to their 1960’s profile and improving their drainage capability.

In recent years, an accumulation of sediment has narrowed the river channel and this is believed to be just one of the reasons for the severe flooding that took place. A network of mobile real-time water quality monitors is therefore being deployed to continuously monitor water quality upstream and downstream of the dredgers. This work complements the Environment Agency’s wider environmental monitoring.

Adcon Telemetry plus Hydrolab WQ sonde.

Adcon Telemetry plus Hydrolab WQ sonde.

The monitors consist of Hydrolab water quality ‘sondes’ and Adcon telemetry systems which transmit near-live data during the dredging operation that is due to run until the Winter of 2014. The monitors are anchored to the river bed and suspended in the river by means of two small buoys. Each sonde is fitted with sensors for the measurement of dissolved oxygen (DO), ammonium, temperature, pH, conductivity and turbidity. A short cable connects each sonde to an Adcon telemetry unit on the bank, which transmits data via GPRS every 10 minutes. The sondes contain internal dataloggers, however the transmitted data is available to project staff in near real-time via a web-based data portal. If water quality meets the pre-set alert conditions (for temperature, dissolved oxygen or ammonium), email messages are issued via the telemetry units. It is important to note that poor water quality can be caused by a number of factors including low flow levels and high nutrient levels arising from many sources in the area.

Downstream monitoring!

Downstream monitoring!

The project plan has allowed for up to eight dredging teams, and the monitors are being installed approximately 50 metres upstream and 100-150 meters downstream of the dredgers – to allow sufficient mixing.

Simon Browning from Wavelength Environmental has been monitoring the data from the sondes and says: “The monitors are quick and easy to deploy, and have performed very well; however, portability is extremely important because the instruments have to be moved and redeployed as the dredging work proceeds.

“We have also started fitting GPS units to the telemetry systems so that we can keep track of the monitoring locations. This is important because each dredging team is constantly moving, so the monitors have to be moved regularly.”

Matthew Ellison, a telemetry specialist from OTT Hydrometry, was delighted to be involved in this high profile project and recommended the Adcon systems because they are extremely small and therefore portable, and have been designed to run on very low power, which means they can be left to run in remote locations for extended periods of time with just a small solar panel.

In January, Owen Paterson, the Environmental Secretary of State in England, asked for a 20 year Action Plan to be developed to look at the various options for the sustainable management of flood risk on the Somerset Levels and Moors. The plan is supported by a £10m investment from the Department for Transport with a further £500k from the Department for Communities and Local Government, on top of the £10m previously announced by the British Prime Minister. The plan has been published and is available here on the Somerset County Council website!

Whilst the plan recognises that it will not be possible to stop flooding completely, it has 6 key objectives:

  1. Reduce the frequency, depth and duration of flooding.
  2. Maintain access for communities and businesses.
  3. Increase resilience to flooding for families, agriculture, businesses, communities, and wildlife.
  4. Make the most of the special characteristics of the Somerset Levels and Moors (the internationally important biodiversity, environment and cultural heritage).
  5. Ensure strategic transport connectivity, both within Somerset and through the county to the South West peninsula.
  6. Promote business confidence and growth.

“Dredging is one of the one things the local community has really been pressing for and people are going to check the Environment Agency is doing the work properly. The water quality monitoring undertaken by the mobile monitors and by our own static monitors will help provide assurance that the environment is not compromised by this work,” said Graham Quarrier for the Environment Agency.


Energy experience shared by users and producers!

26/06/2014
Notable industry experts discussed the future of smart infrastructures, substation automation and the Internet of Energy, providing valuable insights for improving operational efficiency.

Last May industrial software and energy automation expert COPA-DATA hosted the Energy Experience Day in Warwick (GB), an event aimed at addressing the challenges currently faced by power utilities, municipalities and grid operators.

Engineers and analysts from all parts of industry attended the Energy Experience Day in May 2014

Engineers and analysts from all parts of industry attended  and participated in Copa-Data’s Energy Experience Day in May 2014

The energy industry, having gone through drastic changes over the last hundred years, now faces a new frontier of innovation. Usability, design, independence and the ergonomics of process control are paving the way for most critical industries. Sectors such as pharmaceutical, energy and infrastructure, food and beverage, manufacturing automation and automotive are seeking to revolutionise human interconnectivity.

Martyn Williams

Martyn Williams

Host to a series of expert presentations, the Energy Experience Day delivered insight into the key issues of standardisation and collaboration within the industry. Martyn Williams, Managing Director of COPA-DATA in Britain, kicked things off with a keynote speech looking at how far the industry has come over the last hundred years and what the future holds.

“The future of the energy industry is hugely dependent on continuous progress in the field of Smart Grids,” explained Williams. “Industrial automation software is one of the keys to creating a national grid system that is smart enough to meet the rising demand for energy and integrate renewable energy sources. Products like the zenon Energy Edition make interfaces more efficient, ergonomic and user-friendly, while also increasing the security of substations, power plants and wind farms.”

Focusing on substation automation and smart infrastructures, industry experts from Intel, Mitsubishi, Advantech, Bilfinger and the University of Salzburg (A) spoke at the event. The discussions centred on the need for standardisation within the energy supply chain.

In particular, the importance of standards such as IEC 61850, an embedded protocol used in supervisory control and data acquisition (SCADA) systems, was highlighted as the gateway to cost effective, multi-vendor substation automation. Its role in helping companies bridge the gap between centralised control and the increasingly dispersed nature of geo-information systems, was emphasised.

Ross Corfield, EMEA Market Development Manager for Intelligent Transportation at Intel, spoke about the Internet of Things (IoT), end-to-end (E2E) connectivity, infrastructure security and the growth of cloud computing.

“Intel is very keen to understand the issues and challenges faced by the energy sector,” he explained. “The COPA-DATA Energy Experience Day is the perfect opportunity to connect with people who operate on the ground and face these challenges on a day-to-day basis. For us, the event has been about how Intel can design the best technology that will make a difference for the future of energy.”

Juergen Resch

Juergen Resch

Jürgen Resch, Industry Manager for Energy at COPA-DATA, stressed the importance of best practice in substation automation. He demonstrated how the optimisation of software architecture has now improved control capability over geographically remote locations using portable and mobile devices.

Cost reduction was another key area highlighted by several speakers at the event. David Bean, Infrastructure Sales Manager at Mitsubishi UK, spoke about how effective telemetry and data management can yield significant cost savings in substation automation. Tony Milne, Manager for Power and Energy at Advantech, expanded on the topic of effective multi-vendor automation. He explained how IEC 61850 enables multi-vendor systems for substations to improve technical features, reduce costs and facilitate commissioning or installations.

Nigel Allen, Sales Manager at Bilfinger Industrial Automation Services, developed on the challenges faced by a non-integrated system which includes multiple companies, energy sources, interfaces, programming techniques and communication protocols. He then moved on to explain how Bilfinger addressed some of these challenges in an offshore wind farm project and an energy management application for large buildings.

Sébastien Roberto, Sales Manager at COPALP, COPA-DATA’s French subsidiary, also discussed the software needs of the energy industry. He emphasised the importance of using universal tools, which support protocols like IEC 61850, IEC 60870, MODBUS, DNP and DLMS/COSEM. He also stressed the importance of remote access, including online debugging and soft scope for the future of the energy industry. “The key,” Roberto concluded, “is to optimise resources, to ensure the reliability of products and make customers’ lives better.”

Simon Back, Researcher at the Salzburg University of Applied Sciences, offered a comprehensive presentation regarding the potential of bridging SCADA systems and Geoinformation systems (GIS) for the energy sector, particularly in the field of Smart Grids. For example, he explained, GIS can help visualise the position of electric consumers, generators and power lines of a Smart Grid, while SCADA can fulfil the surveillance and control function of the system.

Overall, the Energy Experience Day was received well by the public. Attendees included engineers and analysts from all parts of the industry including the British National Grid, Alstom, Atkins and Network Rail.

“The configuration specification [IEC 61850] is the key to industry development,” said Ray Zhang, Tech Leader of Automation Engineering at National Grid. “This is a wonderful forum for utilities developers, manufacturers and systems integrators to get together and share experiences and information.”

“The Energy Experience Day was all about giving people an idea, an inspiration about what can be achieved with standardised software, independence, ergonomics, IEC 61850 and collaborative partners,” explained Martyn Williams. “All of us at COPA-DATA would like to thank the attendees and we look forward to building on the success of this event with a follow-up session to be arranged for later this year.”


Joining trade bodies – what’s in it for you?

05/05/2014

The Monster Raving Loony Party, The Telegraph Pole Appreciation Society, The Association for Dressings & Sauces, The Freshwater Biological Association… The names of all of these organisations may put a smile on our face, yet they all boast healthy memberships. However, if you’re in the automation business, chances are you will be looking to join a different kind of professional body. 

REO070 - Blog post about REO joining trade bodies - Image copyREO recently joined two high profile trade organisations. GAMBICA is the trade association for Instrumentation, Control, Automation, and Laboratory Technology in Britain and Power Electronics UK – the British industry think tank.

These trade bodies represent a co-ordinated voice in industry and their input is beneficial to both members and the economy overall. They have a crucial role to play in promoting best practice, helping companies become more competitive and formulating effective public policy and delivery.

Joining trade bodies also has financial benefits. Sitting at the heart of industry, they   provide members with specialist advice, particularly on technical, legal and commercial issues. Members also gain access to special rates through affinity services and regulatory cost avoidance.

In addition, joining trade bodies creates networking opportunities, enabling companies to promote themselves at conferences, exhibitions and other industry events.

There is a lot of kudos for businesses displaying their affiliation to a trade association. It increases consumer confidence and also positively impacts relationships with suppliers and partners. After all, exhibiting the membership badge or logo on any marketing material serves as a third party endorsement of your company’s standards and values.

However, here at REO we believe that the relationship between trade organisations and members should be mutually beneficial. For instance, one of the drivers behind our decision to join Power Electronics UK was to help with the trade body’s stated aim of creating sustainable growth strategies for the industries it serves.

But the bottom line is always customer service and delivery of the right product for the right application. We think joining these two bodies will help us deliver both.

Sharing information and expertise with other trade body members enables product development, innovation and influences regulatory compliance. It was an obvious choice for REO UK, as an original manufacturer of electronic controllers, components and electrical regulators, to join GAMBICA and Power Electronics UK – much to the detriment of more ‘colourful’ organisations out there.