The future is (almost) now!

29/11/2015

Buzzwords fly around in industry like wasps at a picnic. Industry 4.0 is one of these hugely popular concepts, particularly when it comes to manufacturing. Here Steve Hughes, managing director of REO UK, gives further insight into Industry 4.0.

A business man with an open hand ready to seal a deal!

The first industrial revolution saw the development of mechanisation using water and steam power. The second was the introduction of electricity in manufacturing environments, which facilitated the shift to mass production. The digital revolution happened during our lifetime, using electronics and IT to further automate manufacturing.

Industry 4.0 is the fourth in this series of industrial revolutions. Although it is still, relatively speaking, in its infancy, the idea relies on sophisticated software and machines that communicate with each other to optimise production.

In Industry 4.0, strong emphasis is placed on the role of intelligent factories. They are energy efficient organisations based on high-tech, adaptable and ergonomic production lines. Smart factories aim to integrate customers and business partners, while also being able to manufacture and assemble customised products.

Industry 4.0 is more about machines doing the work and interpreting the data, than relying on human intelligence. The human element is still central to the manufacturing process, but fulfils a control, programming and servicing role rather than a shop floor function.

Siemens_Amberg

At Siemens’ Amberg Plant Simatic PLCs manage the production of PLCS!

The Siemens (IW 1000/34) Electronic Works facility in Amberg (D), is a good example of the next generation of smart plants. The 108,000 square-foot high-tech facility is home to an array of smart machines that coordinate everything from the manufacturing line to the global distribution of the company’s products.

Despite the endless variables within the facility, a Gartner industry study conducted in 2010 found that the plant boasts a reliability rate of more than 99 per cent, with only 15 defects in every million finished products.

Thanks to the data processing capacity of Industry 4.0-ready devices, it is possible to generate the information, statistics and trends that allow manufacturers to make their production lean and more fuel efficient.

If you work in the food manufacturing industry, you probably know that many production lines today operate at less than 60 per cent efficiency, which means there is considerable room for improvement. Saving electricity and water are also key requirements for modern plant managers, who can achieve their eco-friendly goals by using smart plant connectivity.

The great news is that a lot of the technology associated with Industry 4.0 already exists. The not so great news is that implementing it will probably cost your company a pretty penny, especially if you aim to be an early adaptor.

What the future holds
For most automation companies, the move will be a gradual one, an evolution rather than a revolution. This is why continuity with older systems will still be essential for manufacturing in the years to come.

Industry 4.0 will ultimately represent a significant change in manufacturing and industry. In the long run, the sophisticated software implanted in factory equipment could help machines self-regulate and make more autonomous decisions. Decentralisation also means tasks currently performed by a central master computer will be taken over by system components.

In years to come, geographical and data boundaries between factories could become a thing of the past, with smart plants joining up sites located in different places around the world.

Industry 4.0 is an excellent opportunity for industries to apply their skills and technologies to gradually start the shift towards smarter factories. New technologies will also lead to more flexible, sustainable and eco-friendly production and manufacturing lines. The first step is taking the Industry 4.0 concept from the land of buzzwords, to the land of research and development.


Powering cathodic protection.

11/08/2015

Steve Hughes of REO UK explains how cathodic protection can adapt to become more controlled and efficient than ever before, in line with industry 4.0.

Often dubbed the inconspicuous killer, rust costs the global economy $2.2 trillion dollars every year. It accounts for anywhere between 3.5 to 4.5 per cent of gross domestic product (GDP) and is responsible for the structural failure of steel frames around the world. From bridges and cars, transcontinental and marine pipelines, to industrial machinery, tools and parts, rust contributes significantly to plant downtime the world over.

REO142Whether it’s steel pipelines or corrugated sheets in highly saline marine environments or reinforced concrete structures, impressed current cathodic protection (ICCP) is used widely to protect iron and steel structures against corrosion. Embedded anodes are connected to a control panel where the system produces an electrical current to suppress the naturally occurring electrochemical activity. In effect, the metal surface being protected becomes the cathode.

Often used over large geographic areas, cathodic protection systems have traditionally incurred high costs as engineers are required to perform extensive field surveys to ensure the system is working.

With the advent of concepts such as industry 4.0 and the Internet of Things (IoT) business leaders are increasingly pushing for increased transparency of business intelligence. Features such as remote monitoring, accurate control and measurement are now necessary to increase business process efficiencies in multinational organisations.

To overcome these challenges, REO has developed the REOTRON SMP-CP, a robust transformer rectifier power supply range specifically designed for cathodic protection applications. Built with the latest primary switch-mode technology, the REOTRON SMP-CP can be controlled from zero to maximum voltage or current.

This controllability is essential for cathodic protection applications. In newer installations that don’t require a high degree of electrical power availability, if a power supply isn’t driven to low voltages, over protection can lead to gas formation. This can contribute to surface bubbling and corrosion.

Voltage and current levels can be controlled through the range using an integrated keypad, external potentiometers, by using analogue control signals (0-10 VDC, 0-20 mA), RS232 serial communication and, most excitingly, by industrial fieldbus interfaces such as Profibus, CAN, DeviceNet or EtherCat. The enhanced fieldbus network control allows easy integration with existing supervisory control and data acquisition (SCADA) systems, opening up the use of remote monitoring, a vital feature especially for geographically dispersed operations.

Using the latest primary switch mode technology, the REOTRON SMP-CP units offer a high level of efficiency, easy maintenance and very low output voltage ripple packed into a lightweight and compact housing. Providing a 4-20 mA feedback, the unit achieves a proportional output for current and voltage. This makes metering easier and eliminates the need for current shunts.

They say rust is the longest battle but with accurate, highly controllable and remote monitoring of ICCP applications, engineers may one day win the war.


Joining trade bodies – what’s in it for you?

05/05/2014

The Monster Raving Loony Party, The Telegraph Pole Appreciation Society, The Association for Dressings & Sauces, The Freshwater Biological Association… The names of all of these organisations may put a smile on our face, yet they all boast healthy memberships. However, if you’re in the automation business, chances are you will be looking to join a different kind of professional body. 

REO070 - Blog post about REO joining trade bodies - Image copyREO recently joined two high profile trade organisations. GAMBICA is the trade association for Instrumentation, Control, Automation, and Laboratory Technology in Britain and Power Electronics UK – the British industry think tank.

These trade bodies represent a co-ordinated voice in industry and their input is beneficial to both members and the economy overall. They have a crucial role to play in promoting best practice, helping companies become more competitive and formulating effective public policy and delivery.

Joining trade bodies also has financial benefits. Sitting at the heart of industry, they   provide members with specialist advice, particularly on technical, legal and commercial issues. Members also gain access to special rates through affinity services and regulatory cost avoidance.

In addition, joining trade bodies creates networking opportunities, enabling companies to promote themselves at conferences, exhibitions and other industry events.

There is a lot of kudos for businesses displaying their affiliation to a trade association. It increases consumer confidence and also positively impacts relationships with suppliers and partners. After all, exhibiting the membership badge or logo on any marketing material serves as a third party endorsement of your company’s standards and values.

However, here at REO we believe that the relationship between trade organisations and members should be mutually beneficial. For instance, one of the drivers behind our decision to join Power Electronics UK was to help with the trade body’s stated aim of creating sustainable growth strategies for the industries it serves.

But the bottom line is always customer service and delivery of the right product for the right application. We think joining these two bodies will help us deliver both.

Sharing information and expertise with other trade body members enables product development, innovation and influences regulatory compliance. It was an obvious choice for REO UK, as an original manufacturer of electronic controllers, components and electrical regulators, to join GAMBICA and Power Electronics UK – much to the detriment of more ‘colourful’ organisations out there.