The ‘ins and outs’ of air quality monitoring!

20/02/2017
The British National Institute for Health and Care Excellence (NICE) recently issued draft guidance on ‘Air pollution – outdoor air quality and health.’ 

Here, Jim Mills, Managing Director of Air Monitors Ltd, explains why there will need to be more funding for monitoring if the mitigation measures mentioned in the guidance are to be implemented effectively. Jim also highlights the close relationship between outdoor air quality and the (often ignored) problems with indoor air quality.

The NICE guidelines are being developed for Local Authority staff working in: transport, planning, air quality management and public health. The guidance is also relevant for staff in healthcare, employers, education professionals and the general public.

Covering road-traffic-related air pollution and its links to ill health, the guidelines aim to improve air quality and so prevent a range of health conditions and deaths. Unfortunately, on the day that the draft guideline was published, most of the national media focused on one relatively minor recommendation relating to speed bumps. ‘Where physical measures are needed to reduce speed, such as humps and bumps, ensure they are designed to minimise sharp decelerations and consequent accelerations.’ Measures to encourage ‘smooth driving’ are outlined; however, the guidelines also address a wide range of other issues, which, in combination, would help tackle urban air pollution.

Public sector transport services should implement measures to reduce emissions, but this is an area that could involve the greatest financial cost.

Many local authorities would doubtless comment that they are already implementing many of the guideline recommendations, but refer to budgetary constraints on issues that involve upfront costs. This issue was raised on BBC Radio 4 when the issue was discussed on 1st December.

AQMesh Pod

AQMesh Pod

The NICE guidelines recommend the inclusion of air quality issues in new developments to ensure that facilities such as schools, nurseries and retirement homes are located in areas where pollution levels will be low. LAs are also urged to consider ways to mitigate road-traffic-related air pollution and consider using the Community Infrastructure Levy for air quality monitoring. There are also calls for information on air quality to be made more readily available.

LAs are also being urged to consider introducing clean air zones including progressive targets to reduce pollutant levels below the EU limits, and where traffic congestion contributes to poor air quality, consideration should be given to a congestion charging zone. The guidelines also highlight the importance of monitoring to measure the effects of these initiatives.

As part of the consultation process, NICE is looking for evidence of successful measures and specifically rules out “studies which rely exclusively on modelling.”

In summary, all of the initiatives referred to in the NICE report necessitate monitoring in order to be able to measure their effectiveness. However, most LAs do not currently possess the monitoring capability to do so. This is because localised monitoring would be necessary before and after the implementation of any initiative. Such monitoring would need to be continuous, accurate and web-enabled so that air pollution can be monitored in real-time. AQMesh is therefore the ideal solution; small, lightweight, quick and easy to install, these air quality monitors are able to monitor all the main pollutants, including particulates, simultaneously, delivering accurate data wirelessly via the internet.

Whilst AQMesh ‘pods’ are very significantly lower in cost both to buy and to run than traditional reference stations, they still represent a ‘new’ cost. However any additional costs are trivial in comparison with the costs associated with the adverse health effects caused by poor air quality, as evidenced in the recent report from the Royal College of Physicians.

Inside Out or Outside In?

Fidas® Frog

Fidas® Frog

The effects of air pollution are finally becoming better known, but almost all of the publicity focuses on outdoor air pollution. In contrast, indoor air quality is rarely in the media, except following occasional cases of Carbon Monoxide poisoning or when ‘worker lethargy’ or ‘sick building syndrome’ are addressed. However, it is important to understand the relationship between outdoor air quality and indoor air quality. Air Monitors is currently involved in a number of projects in which air quality monitoring is being undertaken both outside and inside large buildings, and the results have been extremely interesting.

Poorly ventilated offices tend to suffer from increased Carbon Dioxide as the working day progresses, leading to worker lethargy. In many cases HVAC systems bring in ‘fresh’ air to address this issue, but if that fresh air is in a town or city, it is likely to be polluted – possibly from particulates if it is not sufficiently filtered and most likely from Nitrogen Dioxide. Ventilating with outdoor air from street level is most likely to bring air pollution into the office, so many inlets are located at roof level. However, data from recent studies indicate that the height of the best air quality can vary according to the weather conditions, so it is necessary to utilise a ‘smart’ system that monitors air quality at different levels outside the building, whilst also monitoring at a variety of locations inside the building. Real-time data from a smart monitoring network then informs the HVAC control system, which should have the ability to draw air from different inlets if available and to decide on ventilation rates depending on the prevailing air quality at the inlets. This allows the optimisation of the internal CO2, temperature and humidity whilst minimising the amount of external pollutants brought into the indoor space. In circumstances where the outside air may be too polluted to be used to ventilate, it can be pre-cleaned by scrubbing the pollutant gases in the air handling system before being introduced inside the building.

Fidas200The implementation of smart monitoring and control systems for buildings is now possible thanks to advances in communications and monitoring technology. AQMesh pods can be quickly and easily installed at various heights outside buildings and further units can be deployed internally; all feeding near-live data to a central control system.

Another example of indoor air quality monitoring instrumentation developing from outdoor technology is the ‘Fidas Frog,’ a new fine dust aerosol spectrometer developed by the German company Palas. The Frog is an indoor, wireless, battery-powered version of the hugely popular, TÜV and MCERTS certified Fidas 200. Both instruments provide simultaneous determination of PM fractions, particle number and particle size distribution, including the particle size ranges PM1, PM2.5, PM4, PM10 and TSP.

Evidence of outdoor air pollution contaminating indoor air can be obtained with the latest Black Carbon monitors that can distinguish between the different optical signatures of combustion sources such as diesel, biomass, and tobacco. The new microAeth® MA200 for example, is a compact, real-time, wearable (400g) Black Carbon monitor with built-in pump, flow control, data storage, and battery with onboard GPS and satellite time synchronisation. Samples are collected on an internal filter tape and wireless communications are provided for network or smartphone app integration and connection to other wireless sensors. The MA200 is able to monitor continuously for 2-3 weeks. Alternatively, with a greater battery capacity, the MA300 is able to provide 3-12 months of continuous measurements.

In summary, a complete picture of indoor air quality can be delivered by a combination of AQMesh for gases, the Palas Frog for particulates and the microAeth instruments for Black Carbon. All of these instruments are compact, battery-powered, and operate wirelessly, but most importantly, they provide both air quality data AND information on the likely source of any contamination, so that the indoor effects of outdoor pollution can be attributed correctly.

@airmonitors #Environment #PAuto @_Enviro_News


Analyzer underpins growth of container inspection company.

10/02/2017

After a career as a customs officer in the Netherlands, Wim van Tienen was well aware of the toxic gas hazards presented by some freight containers, so in 2009 he started a company, Van Tienen Milieuadvies B.V., offering gas analysis and safety advice. The company grew quickly and now employs 23 staff. Wim attributes a large part of this success to the advanced FTIR gas detection and analysis technology upon which the company’s services depend.

Background

Wim van Tienen

Wim van Tienen

It has been estimated that there are more than 17 million shipping containers in the world, and at any time about one third of them are on ships, trucks, and trains. Over a single year, the total number of container trips has been estimated to be around 200 million.

The air quality inside containers varies enormously, depending on the goods, the packing materials, transit time, temperature, humidity and the possible presence of fumigants. Consequently, many containers contain dangerous levels of toxic gases and represent a major threat to port and transport workers, customs officials, warehousemen, store employees and consumers. It is therefore essential that risks are assessed effectively before entry is permitted.

Solvent vapours and most fumigants, whilst harmful, can be detected by the human nose, but Wim says: “Some gases are odourless and some have a high odour detection threshold, which means that you can only smell the substance in high concentrations; ethylene oxide for example, is commonly used as a sterilant in relation to medical devices. It is extremely toxic and has a low TLV limit of 0,5 ppm. However the odour threshold limit of ethylene oxide is 500 ppm, so detection with instrumentation is essential.”

The wide variety of potential contaminants represents a technological challenge to those responsible for testing, because if testers seek to detect specific gases, they risk failing to detect other compounds. It is also not practical to test every single container, so logical procedures must be established in order to minimise risks.

Gas Detection and Measurement
In 2009, when Wim first established the company, container gas detection was carried out with traditional field measurement techniques (gas detection sensors and tubes). “This approach was complicated, costly and time-consuming, and it was impossible to cover all risks,” he says. “With sensors and tubes, only a limited number of compounds can be measured specifically. Furthermore, the accuracy of detection tubes is poor and they can suffer from cross-sensitive reactions by interfering substances.

“Technologies such as PID-detectors respond to a wide variety of organic compounds, but they are not selective and unable to detect commonly found substances with high ionisation potentials such as 1,2-dichloroethane and formaldehyde.” Wim does not, therefore, believe that traditional measurement techniques are the best approach for covering all risks. “In order to test for the most common gases, it would be necessary to utilise a large number of tubes for every container, but this would still risk failing to detect other compounds and would be very expensive.

“It is possible to speciate organic compounds when using a Gas Chromatograph, but the number of compounds that can be tested is limited, and the use of a GC necessitates frequent calibration with expensive standard gases.”

Simultaneous multigas analysis
As a result of the problems associated with traditional gas detection techniques, Wim was keen to find an alternative technology and in 2013 he became aware of portable FTIR multigas analyzers from the Finnish company Gasmet Technologies. “The Gasmet DX4040 appeared to be the answer to our prayers,” Wim says. “The instrument is able to both detect and measure hundreds of compounds simultaneously; with this technique all inventoried high risk substances, such as ethylene oxide and formaldehyde, are always measured in real-time.

“With the help of Peter Broersma from Gasmet’s distributor Reaktie, a special library of over 300 gases was developed for our container monitoring application, and 8 Gasmet DX4040 FTIR instruments are now employed by our team of gas testing specialists.”

The major advantage of the Gasmet FTIR analyzers is the simultaneous multigas analysis capability. However Wim says: “Our testing work is now much faster, efficient and cost-effective, not least because the analyzers are small, lightweight, relatively simple to run, and no calibration is required other than a quick daily zero check with Nitrogen.”

Van Tienen Milieuadvies also employs a fully trained and highly qualified chemist, Tim Gielen, who is able to conduct in-depth analysis of recorded FTIR spectra when necessary. This may involve comparing results with Nist reference spectra for over 5000 compounds.

Most of the gases that are detected and measured by FTIR analyzers are cargo related. Wim says: “Off-gassing during shipment is the greatest problem, producing VOCs such as Toluene, Xylenes, MEK, 1,2 dichloroethane, blowing agents such as isopentane, and butanes from the packing materials and products.

“Formaldehyde, which evaporates from glued pallets, is most commonly found. On the other hand, less frequently found fumigants, such as sulfuryl difluoride and hydrogen cyanide are also always monitored with our FTIR analyzers.”

Container management
The need for container gas testing is driven by employers’ duty of care for employees, which is embedded in international health and safety regulations. Companies receiving containers must investigate whether employees that open or enter containers, may be exposed to the dangers of suffocation, intoxication, poisoning, fire or explosion. In order for employers to protect staff from these hazards, a risk assessment is necessary, coupled with an effective plan to categorise and monitor container flows. “This is how we develop an effective testing strategy,” Wim explains. “If a flow of containers from the same source containing the same goods and packing materials is found to be safe, the number of containers being tested within that flow can be reduced. Similarly, if toxic gases are identified regularly in a container flow, the frequency of testing will be increased.”

Once a container has been found to contain toxic levels of a gas or gases, it is necessary for that container to be ‘de-gassed’ which is a service that Van Tienen Milieuadvies provides. The process involves fitting a powerful ventilator to the door and capturing the gases with activated carbon. Once degassing is complete, it is important that the container is unloaded promptly, because the gases involved will re-accumulate quickly in a closed container, resulting in the need for repeat testing.

With the benefit of many years of experience, Wim estimates that around 10% of containers contain toxic gases. “This means that hundreds of thousands of containers are travelling the world, representing a major risk to anyone that might enter or open them, so it is vital that effective testing strategies are in place wherever that risk exists.”

“FTIR gas analysis has benefited this work enormously. For us, the main advantages are speed and peace of mind – we are now able to test more containers per day, and by testing for such a large number of target compounds, we are able to dramatically lower the risks to staff. The speed with which we are now able to test containers, coupled with the negligible requirement for service, calibration and consumables, means that the ongoing cost of monitoring is minimal.

“Van Tienen combines the Gasmet DX4040 measurements with risk analysis, which provides the best protection for staff responsible for opening containers. We have LRQA certification for the procedures that we have developed to demonstrate compliance with occupational health and safety legislation.

“Risk analysis provides cost reduction for our clients, due to the fact that measurement frequencies in safe flows can be reduced significantly. Root cause analysis is also part of our risk analysis.”

Looking forward Wim believes that the use of Gasmet FTIR will expand rapidly around the world as the risks associated with containers become better understood, and as employers become more aware of the advantages of the technology.


Cybersecurity at the heart of the Fourth Industrial Revolution.

08/02/2017
Ray Dooley, Product Manager Industrial Control at Schneider Electric Ireland examines the importance of maintaining security as we progress through Industry 4.o.
Ray Dooley, Schneider Electric Ireland

Ray Dooley, Schneider Electric Ireland

A technical evolution has taken place, which has made cyber threats more potent than at any other time in our history. As businesses seek to embrace Industry 4.0, cybersecurity protection must be a top priority for Industrial Control Systems (ICS). These attacks are financially crippling, reduce production and business innovation, and cost lives.

In years gone by, legacy ICS were developed with proprietary technology and were isolated from the outside world, so physical perimeter security was deemed adequate and cyber security was not relevant. However, today the rise of digital manufacturing means many control systems use open or standardised technologies to both reduce costs and improve performance, employing direct communications between control and business systems. Companies must now be proactive to secure their systems online as well as offline.

This exposes vulnerabilities previously thought to affect only office and business computers, so cyber attacks now come from both inside and outside of the industrial control system network. The problem here is that a successful cyber attack on the ICS domain can have a fundamentally more severe impact than a similar incident in the IT domain.

The proliferation of cyber threats has prompted asset owners in industrial environments to search for security solutions that can protect their assets and prevent potentially significant monetary loss and brand erosion. While some industries, such as financial services, have made progress in minimising the risk of cyber attacks, the barriers to improving cybersecurity remain high. More open and collaborative networks have made systems more vulnerable to attack. Furthermore, end user awareness and appreciation of the level of risk is inadequate across most industries outside critical infrastructure environments.

Uncertainty in the regulatory landscape also remains a significant restraint. With the increased use of commercial off-the-shelf IT solutions in industrial environments, control system availability is vulnerable to malware targeted at commercial systems. Inadequate expertise in industrial IT networks is a sector-wide challenge. Against this backdrop, organisations need to partner with a solutions provider who understands the unique characteristics and challenges of the industrial environment and is committed to security.

Assess the risks
A Defence-in-Depth approach is recommended. This starts with risk assessment – the process of analysing and documenting the environment and related systems to identify, and prioritise potential threats. The assessment examines the possible threats from internal sources, such as disgruntled employees and contractors and external sources such as hackers and vandals. It also examines the potential threats to continuity of operation and assesses the value and vulnerability of assets such as proprietary recipes and other intellectual properties, processes, and financial data. Organisations can use the outcome of this assessment to prioritise cybersecurity resource investments.

Develop a security plan
Existing security products and technologies can only go part way to securing an automation solution. They must be deployed in conjunction with a security plan. A well designed security plan coupled with diligent maintenance and oversight is essential to securing modern automation systems and networks. As the cybersecurity landscape evolves, users should continuously reassess their security policies and revisit the defence-in-depth approach to mitigate against any future attacks. Cyber attacks on critical manufacturers in the US alone have increased by 20 per cent, so it’s imperative that security plans are up to date.

Upskilling the workforce
There are increasingly fewer skilled operators in today’s plants, as the older, expert workforce moves into retirement. So the Fourth Industrial Revolution presents a golden opportunity for manufacturing to bridge the gap and bolster the workforce, putting real-time status and diagnostic information at their disposal. At the same time, however, this workforce needs to be raised with the cybersecurity know-how to cope with modern threats.

In this regard, training is crucial to any defence-in-depth campaign and the development of a security conscious culture. There are two phases to such a programme: raising general awareness of policy and procedure, and job-specific classes. Both should be ongoing with update sessions given regularly, only then will employees and organisations see the benefit.

Global industry is well on the road to a game-changing Fourth Industrial Revolution. It is not some hyped up notion years away from reality. It’s already here and has its origins in technologies and functionalities developed by visionary automation suppliers more than 15 years ago. Improvements in efficiency and profitability, increased innovation, and better management of safety, performance and environmental impact are just some of the benefits of an Internet of Things-enabled industrial environment. However, without an effective cybersecurity programme at its heart, ICS professionals will not be able to take advantage of the new technologies at their disposal for fear of the next breach.

@SchneiderElec #Pauto #Industrie40


EMC problems could lead to lost business.

09/01/2017

If you were to tell your boss that a fifth of your output was being wasted and could not be accounted for, I doubt they would be too impressed. Where would you think the wasted output was coming from? Most managers would blame human error in their workforce, but they could be jumping to conclusions. Here, Keith Armstrong, global electromagnetic compatibility (EMC) expert at EMC Standards looks at a case where radio frequency interference (RFI) had a significant detrimental impact on a business.

emc_picA large manufacturer of industrial fasteners, working in partnership with a major customer, agreed to install a packaging cell. This contained an automatic weighing machine that filled plastic packets with fasteners and a radio frequency (RF) welding machine, which sealed the packets. For financial reasons, the two machines were purchased separately, however the cost implications of this decision later became much more significant.

Both machines were supplied, installed and tested successfully. However, when the manufacturer used both machines at the same time, the weighing machine suffered more than a 25 per cent error rate caused by RF interference from the welding machine. This significant error translated into a substantial amount of wasted power output. In an eight-hour shift, the packaging cell should have packaged £20,000 worth of fasteners, however the automatic weighing machine was so inaccurate that it could have given away £4,000 worth of fasteners.

As the electromagnetic environment was not considered at the start of the procurement process, the facilities managers were not aware of the interference that would be caused by the RF welding machine. They also failed to specify EMC requirements in the contracts for both machines, stipulating only that they should meet all legal requirements. As this was not specific to EMC, the manufacturer could not complain to the suppliers about the loss caused by the RF interference.

It was only by bringing in expert technical assistance that the manufacturer was able to resolve the problem. However, by this point, it had lost six weeks production, suffered additional costs and had lost credibility with its major customer, which could have led to a loss of future sales.

This is only one example of where a business failed to consider EMC issues early in the design process and experienced a series of problems. Many facilities and plant managers are often unaware of the issues and regulations that surround EMC until it is too late and by then they have caused serious problems.

EMC Standards offers advice and resources for those who not only want to learn more about EMC, but those who need to learn more to protect the credibility and performance of their business. After all, it may be easy to blame human error for wasted output in a factory, but the human error could be yours for not considering EMC earlier in the process.


Particulate monitors selling like hot cakes.

03/12/2016

Palas, the German manufacturer of particulate monitoring instruments, is expanding production to cope with demand for its fine particulate monitor, the Fidas® 200. In the following article Jim Mills explains why Air Monitors, the British distributor, is being kept busy by the demand for this exciting new technology.

fidas_200PM monitoring – the ultimate goal
We monitor PM because of its acute health effects. It irritates our eyes and lungs, and some of the finer particles were more recently shown to be able to move directly from the nasal cavity to the brain. Monitoring is therefore essential, but there are almost as many monitoring methods as there are types of PM, so it is vitally important to monitor what matters. If you are measuring dust from a construction site, the PM is relatively large in diameter and heavy, but if you are monitoring PM from diesel emissions in a city, the smallest particles with much less mass but high particle numbers, are of greater interest. Monitoring a single size fraction provides an incomplete picture of particulate contamination and risks ignoring the PM of most interest, particularly if the ignored fractions are the finer particles that travel deepest into the lungs. The ideal PM monitor would therefore reliably and accurately monitor all important PM fractions, with high data capture rates and low service requirements… hence the heavy demand for the Fidas 200.

Fidas® 200
The Fidas 200 is a fine dust ambient air quality monitoring device, developed specifically for regulatory purposes; providing continuous and simultaneous measurement of PM1, PM2.5, PM4, PM10, TSP (PMtot), as well as particle number concentration and particle size distribution between 180nm and 18µm (further non-certified size ranges are also available on request).

Employing a well-established measurement technology – optical light scattering of single particles – the Fidas 200 is equipped with a high intensity LED light source, which is extremely stable, delivering a long lifetime, with minimal service requirements. An optical aerosol spectrometer determines the particle size using Lorenz‐Mie scattered light analysis of single particles. These particles move through an optical measurement volume that is homogeneously illuminated with white light, and each particle generates a scattered light impulse that is detected at an angle of 85° to 95° degrees. The particle number measurement is based on the number of scattered light impulses, and the level of the scattered light impulse is a measure of the particle diameter.

The Fidas 200 operates with a volume flow of approx. 0.3m3/h and is equipped with a Sigma‐2 sampling head, which enables representative measurements even under strong wind conditions. The sampling system includes a drying system that prevents measurement inaccuracies caused by condensation from high humidity, which means that it will continue to function correctly in misty or foggy conditions but without the loss of semi-volatile fractions of the PM. It is also equipped with a filter holder for the insertion of a plane filter (47 or 50 mm in diameter) which enables subsequent chemical analysis of the aerosol.

Different versions of the Fidas 200 allow for stand-alone outdoors installation or for installation inside a measurement cabinet or air quality monitoring station.

Performance
The Fidas 200 is the only ambient continuous PM monitor in the UK to have passed TÜV and MCERTS. The MCERTS certificate (Sira MC16290/01) confirms that the Fidas 200 complies with the MCERTS Performance Standards for Continuous Ambient Air Quality Monitoring Systems, and with MCERTS for UK Particulate Matter. The instrument has type-approval to the Standards EN 12341 (PM10), EN 14907 (PM2.5) and is certified to the Standards EN 15267-1 and -2.

Importantly, the FIDAS 200 has half the uncertainty of many of its rivals and one third of the required uncertainty (25%).

Typical data capture rates exceed 99%. This has been achieved by a design approach that is focused on reliability. For example, two pumps operate in parallel, providing redundancy protection, and the instrument continuously monitors status and calibration.

Monitoring frequency has an adjustable time resolution ranging from 1 second up to 24 hours. However, high frequency data provides almost real-time access to readings when deployed with a remote web-enabled Envirologger. This enables the detection of short-term spikes, providing much greater insight into the causes of PM pollution.

The Fidas instruments have been proven in many countries as well as Britain; Air Monitors has been supplying Fidas PM monitors for around three years and there are now over 30 monitors in operation Britain alone.

Costs
One of the major financial considerations for Fidas 200 is its extremely low operating cost; the requirement for consumables is almost nil (no filter required) and its power consumption is around one fifth of its nearest rival. Calibration can be checked and adjusted, if necessary, quickly and easily in the field with a simple monodisperse powder test.

The purchase cost of a single Fidas 200 is a little more than some ambient PM monitors, but it is less expensive than others. However, for most instruments, a requirement to monitor two fractions, say PM2.5 and PM10, would necessitate two instruments and therefore double the cost. With budgets under pressure, Fidas therefore provides an opportunity to obtain better data for less cost.

In summary, the Fidas 200 offers better performance than all of its rivals; usually at significantly lower capital cost and always with dramatically lower operational costs. Consequently, it is no surprise that these instruments are selling like hot cakes.

@airmonitors #PAuto @_Enviro_News


Systems integration for Industrie 4.0.

22/11/2016
The latest trends and challenges in systems integration.

Our world is getting smaller every day. Never before have remote locations been more accessible thanks to communications technology, smartphones and the internet. Connected devices have infiltrated every aspect of our lives, including the most traditional industry sectors. Here, Nick Boughton, sales manager of Boulting Technology, discusses the challenges connectivity poses for industry, particularly with regard to systems integration and the water industry.

boulting_industrie_4-0One question industry has been unsuccessful in answering refers to the number of connected devices that exist in the world at the moment. Gartner says that by 2020, the Internet of Things will have grown to more than 26 billion units. According to Cisco, there will be 10 billion mobile-ready devices by 2018, including machine to machine – thus exceeding the world population.

The Industrial Internet of Things

Only fifteen years ago, an industrial plant operated on three separate levels. You had the plant processes or operational technology (OT), the IT layer and in between stood the grey area of middleware – connecting management systems to the shop floor. The problem in most enterprises was that the commercial and production systems were entirely separate, often as a deliberate policy. Trying to connect them was difficult not only because of the divergence in the technology, but also the limited collaboration between different parts of the organisation. For these reasons successful implementation of middleware was rare.

Fast forward to today’s smart factory floor that uses the almost ubiquitous Ethernet to make communications as smooth as possible. Supporting the new generation of networking technologies is an increased flow of data, collected and analysed in real-time. However, data is only useful when you can decipher and display it. The next step to industry nirvana is using relevant data for better decisions and predictive analysis, in which the system itself can detect issues and recommend solutions.

Smart manufacturing is based on a common, secure network infrastructure that allows a dialogue – or even better, convergence – between operational and information technology.

The trend goes beyond the factory floor and expands to big processes like national utilities, water treatment and distribution, energy and smart grids, everything in an effort to drive better decision making, improve asset utilisation and increase process performance and productivity.

In fact, some water and energy companies are using the same approach to perform self-analysis on energy efficiency, potential weak points and the integration of legacy systems with new technologies. In a highly regulated and driven sector like utilities, maximising assets and being able to make predictions are worth a king’s ransom.

System integration challenges
System integration in this connected industry landscape comes with its challenges, so companies need to keep up to speed and get creative with technology. Keeping existing systems up to date and working properly is one of the main challenges of industry and big processes alike.

Finally, ensuring your system is secure from cyber threats and attacks is a new challenge fit for Industry 4.0. Connecting a system or equipment to a network is all fine and dandy, but it also brings vulnerabilities that weren’t there before.

Systems integrators relish a challenge and they’re very good at adapting to new technologies. For this reason, some systems integrators have started working closely with industrial automation, IT and security experts to help overcome the challenges posed by Industrie 4.0.

Regardless of whether we’re talking about companies in utilities, manufacturing or transportation, the signs are showing that companies want to get more from their existing assets and are retrofitting systems more than ever.

Of course, retrofitting isn’t always easy. In many cases, upgrading a system without shutting it down is like trying to change the brakes on a speeding bus – impossible. However, unlike the bus scenario, there is usually a solution. All you have to do is find it.

Flexibility is essential for good systems integrators. Being familiar with a wide range of systems and working with different manufacturers is the best way to maximise industry knowledge and expertise, while also keeping up to date with the latest technologies. At Boulting Technology, we partner up with market leaders like Rockwell Automation, Siemens, Mitsubishi, Schneider, ABB and others, to design and supply tailor-made systems integration solutions for a diverse range of industries, processes and platforms.

The world might be getting smaller and we might be more connected than ever before, but some things never change. Relevant experience, partnerships and the desire to innovate are as valuable as they have ever been in this connected new world of Industrie 4.0.

@BoultingTech #PAuto #IoT #Industrie4 @StoneJunctionPR

Innovation drives flue gas treatment.

08/11/2016
Working closely with Gasmet’s Belgian Distributor, Kelma NV, Lhoist has developed laboratory, pilot scale and mobile process monitoring capabilities to evaluate FGT products that are still in the development phase or to demonstrate the effectiveness of existing FGT products at customers’ sites.
lhoistpilotA business strategy with a heavy focus on innovation has enabled Lhoist, a family owned Belgian company, to become one of the world’s leading providers of Flue Gas Treatment (FGT) products and solutions. In this following article, Johan Heiszwolf, Lhoist’s R & D Director for environmental applications and Antti Heikkilä from gas analyser manufacturer Gasmet Technologies explain how Lhoist’s continual investment in innovation has led to impressive growth in a variety of market sectors, including FGT.

Sharing a common goal, experts in emissions monitoring and emissions abatement have formed a working partnership to develop innovative new materials for treating pollutants in flue gas emissions.

Lhoist history
Lhoist’s roots go back to 1889 when Hippolyte Dumont opened a factory in Belgium. Since that time, the firm has spread internationally: first to France in 1926 on the impetus of the founder’s son-in-law, Léon Lhoist, who further developed the company by acquiring lime, limestone and dolomite plants in Belgium and France. Today, Lhoist is a world leading producer of lime, dolime and minerals, with facilities across Europe, the Americas and Asia.

Over the past 35 years, Lhoist’s production has grown significantly and Lhoist now operates more than 100 facilities in 25 countries, with around 6,000 employees of around 40 nationalities.

Lime, clay and the derivatives of these materials are used in an extremely broad spectrum of industries including agriculture, construction, oil and gas, chemicals, glass, metals and environmental protection including water, wastewater and FGT.

The FGT market has grown considerably in recent decades as a result of higher environmental standards and the development of regulations that imposed emissions limits on industrial processes. These regulations have also driven growth in Gasmet’s business as process operators around the world have sought to monitor multiple gases simultaneously with FTIR analysers in order to demonstrate compliance with emission limits.

One of the reasons for the diversity of Lhoist’s markets is the company’s focus on innovation. Just outside Brussels, the company has established a ‘Business Innovation Centre’ (BIC) which is known as a ‘360 degree talent incubator’ because many of the group’s new recruits spend time at the BIC in order to learn about the group’s culture and its core competencies. Focusing on Research & Development, Intellectual Property, and Strategic Marketing, the BIC staff come from 15 different nations and are given time to spend ‘scouting’ for new scientific solutions to commercial challenges. This strong focus on inorganic and application research is one of the ways in which Lhoist retains its position as a leader in key markets and ensures that innovation continues to drive the growth of the company.

FGT Research
One of the first product groups to be developed by the Lhoist BIC was Sorbacal® which is employed for the removal of major acid pollutants (SOx, HCl and HF) in gaseous emissions from combustion plants such as power stations and incinerators. A number of different products within the Sorbacal® range were developed to meet the needs of different processes. For example, particles of Sorbacal® SP/SPS have a much larger surface area and pore volume in comparison with standard hydrated lime, so this product is employed in applications that require enhanced performance.

An enormous number of tests have to be undertaken to evaluate potential new products and in the case of FGT, the effectiveness of candidate products to remove pollutant gases is key. The BIC laboratory therefore developed a capability to generate artificial flue gas mixtures containing acid gases (SO2 and HCl) in a mixture of N2, O2, CO2, H2O and NOx. The gas composition of this artificial flue gas was tightly managed with mass flow controllers in order to ensure an accurate comparison of pre- and post-treated gas for each product under evaluation.

Different gas analysers were initially used to measure different gases. For example, an InfraRed analyser was used to measure SO2, but for this instrument it was necessary to remove moisture from the sample gas before analysis and some SO2 was lost from the sample as a result. “This complicated the work and incurred delays,” comments Alain Brasseur, Lhoist FGT Senior Research Engineer. “It was also necessary to operate a separate bench for HCl, which further extended the time taken for the tests and introduced a higher possibility of experimental error. A key advantage of FTIR is that it measures both SO2 and HCl, and does so without removing water from the sample.”

Bart De Backer from Gasmet’s local distributor Kelma was therefore contacted and asked to provide information on multigas monitoring with FTIR, which led to the utilisation of a Gasmet DX4000 analyser within the BIC laboratory. At the same time, the staff developed an automated system for running the test unattended, and as a result of the FTIR’s ability to monitor multiple gases in almost real-time in conjunction with test automation, the throughput of the laboratory was increased 10-fold. “The use of Gasmet FTIR gave us a greater insight into the characteristics of the sorbent and facilitated a major step forward in our development programme,” comments Alain Brasseur. “By dramatically increasing the throughput we were able to evaluate a larger number of samples in a shorter period of time, which enabled us to discount those products that failed to meet the required levels of performance at an early stage.”

The laboratory trials effectively assess the intrinsic capacity of the sorbents and if they perform well, the assessment process is continued in a pilot plant to evaluate performance under simulated operating conditions. The pilot plant was also developed by the Lhoist BIC, and is capable of generating a mixture of gases and steam at 180 Deg C to mimic aggressive emissions. The pilot plant is also able to measure sorbent performance under dynamic conditions with varying gas concentrations and temperature.

The pilot plant consists of two separate units – each capable of generating dynamic emissions across a broad range of conditions. The emissions from the older of the two units are monitored with a Gasmet DX4000 heated multigas FTIR analyser. A new pilot unit is monitored by Gasmet’s fixed Continuous Emissions Monitoring System (CEMS) which analyzes gas both before and after treatment using a heated switch-over system.

In addition to the chemical characteristics of the sorbent, Lhoist also places a heavy emphasis on its physical characteristics. For example, the grains of a dry powder product have to be fine enough to be reactive, but not too small to negatively impact the flow behavior of the powder.

In addition to the laboratory and pilot plant facilities, Lhoist has also developed a mobile system that is able to operate at customer sites. Historically, this necessitated the deployment of a large truck, but thanks to the compact nature of the portable FTIR analysers, this is no longer necessary; KELMA has supplied two Gasmet DX4000 portable FTIR analysers in customised rugged transport cases so that the monitoring equipment can be quickly and simply shipped around the world to customer sites. The FTIR analysers can even be operated completely remotely at a customer site. For example in a recent trial two FTIR analyzers, measuring inlet and outlet gas composition, were installed in a plant in the USA while they were monitored remotely from Belgium. The experts from KELMA could log-in to the FTIR analyzers and could perform a software update and calibration.

Onsite monitoring is conducted by Lhoist technical support teams to:

  • demonstrate the enhanced performance of the Sorbacal® products
  • show customers how to maximise treatment efficiency
  • help customers troubleshoot abatement issues

The benefits of onsite demonstrations are considerably advanced by the capabilities of FTIR gas analysis.

Advantages of FTIR gas analysis
FTIR (Fourier Transform InfraRed) is a sophisticated technology for analysing sample gases both qualitatively and quantitatively. The key feature of these instruments is their ability to monitor multiple compounds simultaneously. The Gasmet FTIR analysers are capable of measuring almost any gas and have been developed over many years specifically for the emissions monitoring market. This means that they are extremely rugged and work reliably in both fixed and portable versions. However, a key benefit for environmental applications is their ability to analyse hot, wet, aggressive gas mixtures.

All of the company’s FTIR instruments, fixed and portable, contain exactly the same core analyser which means that they can be operated with the same software, no extra training is necessary and results are directly comparable.

Using Calcmet™ software users of Gasmet analysers are able to analyse sample spectra, producing almost real-time data for pre-selected compounds. However, the retention of recorded spectra offers an opportunity to identify ‘unknowns’ by comparison with reference spectra, and to analyse recorded spectra retrospectively for compounds that were not necessarily of interest at the time of the measurement. For example, Lhoist now includes SO3 in many of its measurements and now has the ability to study measurements for this compound from readings that were taken in the past. This highlights an important advantage of FTIR – when it becomes necessary to measure new compounds, because of new legislation for example, no extra hardware is necessary, so the additional costs are negligible.

In contrast with many traditional gas analysers, the Gasmet FTIR instruments do not require periodic recalibration. A daily background spectrum measurement with zero gas (nitrogen) is enough to preserve measurement accuracy. Instead of periodic span calibrations, reference spectra for analysed gases are measured at the factory when the instrument is made and these do not drift.

From Lhoist’s perspective, Alain Brasseur says: “The ability to work with wet, corrosive gases is obviously a major advantage, and since we routinely analyse over 10 gases, monitoring is much less complicated now that we can do so with just one analyser.

“The size of the Gasmet analysers is also a major advantage for us – they fit neatly into the automated testing system which is installed in a normal lab fume cupboard, and the portable equipment is easy to transport to remote customer sites.

“We have found the instruments to be extremely reliable, requiring minimal maintenance. Also, the support from Gasmet and Kelma has been extremely good and the facility to connect to overseas instruments from Brussels via the internet has been a significant benefit.”

In summary, the evolution of Lhoist’s FGT products has been made possible by giving a talented pool of international experts the freedom to innovate and by working in partnership with like-minded technology leaders such as Gasmet.

@Gasmet_Tech #PAuto #Sorbacal #Lhoist