High frequency monitoring needed to protect UK rivers!

Nigel Grimsley from OTT Hydrometry describes relatively new technologies that have overcome traditional barriers to the continuous monitoring of phosphate and nitrate.

The science behind nutrient pollution in rivers is still poorly understood despite the fact that nitrate and phosphate concentrations in Britain’s rivers are mostly unacceptable, although an element of uncertainty exists about what an acceptable level actually is. Key to improving our understanding of the sources and impacts of nutrient pollution is high-resolution monitoring across a broad spectrum of river types.


Green Box Hydro Cycle

Phosphates and nitrates occur naturally in the environment, and are essential nutrients that support the growth of aquatic organisms. However, water resources are under constant pressure from both point and diffuse sources of nutrients. Under certain conditions, such as warm, sunny weather and slow moving water, elevated nutrient concentrations can promote the growth of nuisance phytoplankton causing algal blooms (eurtrophication). These blooms can dramatically affect aquatic ecology in a number of ways. High densities of algal biomass within the water column, or, in extreme cases, blankets of algae on the water surface, prevent light from reaching submerged plants. Also, some algae, and the bacteria that feed on decaying algae, produce toxins. In combination, these two effects can lower dissolved oxygen levels and potentially kill fish and other organisms. In consequence, aquatic ecology is damaged and the water becomes unsuitable for human recreation and more expensive to treat for drinking purposes.

In its State of the Environment report, February 2018, the British Environment Agency said: “Unacceptable levels of phosphorus in over half of English rivers, usually due to sewage effluent and pollution from farm land, chokes wildlife as algal blooms use up their oxygen. Groundwater quality is currently deteriorating. This vital source of drinking water is often heavily polluted with nitrates, mainly from agriculture.”

Good ecological status
The EU Water Framework Directive (WFD) requires Britain to achieve ‘good status’ of all water bodies (including rivers, streams, lakes, estuaries, coastal waters and groundwater) by 2015. However, only 36% of water bodies were classified as ‘good’ or better in 2012. Nutrient water quality standards are set by the Department for Environment, Food & Rural Affairs (DEFRA), so for example, phosphorus water quality standards have been set, and vary according to the alkalinity and height above mean sea level of the river. Interestingly, the standards were initially set in 2009, but in 75% of rivers with clear ecological impacts of nutrient enrichment, the existing standards produced phosphorus classifications of good or even high status, so the phosphorus standards were lowered.

Highlighting the need for better understanding of the relationships between nutrients and ecological status, Dr Mike Bowes from the Centre for Ecology & Hydrology has published research, with others, in which the effects of varying soluble reactive phosphate (SRP) concentrations on periphyton growth rate (mixture of algae and microbes that typically cover submerged surfaces) where determined in 9 different rivers from around Britain. In all of these experiments, significantly increasing SRP concentrations in the river water for sustained periods (usually c. 9 days) did not increase periphyton growth rate or biomass. This indicates that in most rivers, phosphorus concentrations are in excess, and therefore the process of eutrophication (typified by excessive algal blooms and loss of macrophytes – aquatic plants) is not necessarily caused by intermittent increases in SRP.

Clearly, more research is necessary to more fully understand the effects of nutrient enrichment, and the causes of algal blooms.

Upstream challenge
Headwater streams represent more than 70% of the streams and rivers in Britain, however, because of their number, location and the lack of regulatory requirement for continuous monitoring, headwater streams are rarely monitored for nutrient status. Traditional monitoring of upland streams has relied on either manual sampling or the collection of samples from automatic samplers. Nevertheless, research has shown that upland streams are less impaired by nutrient pollution than lowland rivers, but because of their size and limited dilution capacity they are more susceptible to nutrient impairment.

• Bowes, M. J., Gozzard, E., Johnson, A. C., Scarlett, P. M., Roberts, C., Read, D. S., et al. (2012a). Spatial and temporal changes in chlorophyll-a concentrations in the River Thames basin, UK: are phosphorus concentrations beginning to limit phytoplankton biomass? Sci. Total Environ. 426, 45–55. doi: 10.1016/j.scitotenv. 2012.02.056
• Bowes, M. J., Ings, N. L., McCall, S. J., Warwick, A., Barrett, C., Wickham, H. D., et al. (2012b). Nutrient and light limitation of periphyton in the River Thames: implications for catchment management. Sci. Total Environ. 434, 201–212. doi: 10.1016/j.scitotenv.2011.09.082
• Dodds, W. K., Smith, V. H., and Lohman, K. (2002). Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Can. J. Fish. Aquat Sci. 59, 865–874. doi: 10.1139/f02-063
• McCall, S. J., Bowes, M. J., Warnaars, T. A., Hale, M. S., Smith, J. T., Warwick, A., et al. (2014). Impacts of phosphorus and nitrogen enrichment on periphyton accrual in the River Rede, Northumberland, UK. Inland Waters 4, 121–132. doi: 10.5268/IW-4.2.692
• McCall, S. J., Hale, M. S., Smith, J. T., Read, D. S., and Bowes, M. J. (2017). Impacts of phosphorus concentration and light intensity on river periphyton biomass and community structure. Hydrobiologia 792, 315–330. doi: 10.1007/s10750-016-3067-1

Monitoring technology
Sampling for laboratory analysis can be a costly and time-consuming activity, particularly at upland streams in remote locations with difficult access. In addition, spot sampling reveals nutrient levels at a specific moment in time, and therefore risks missing concentration spikes. Continuous monitoring is therefore generally preferred, but in the past this has been difficult to achieve with the technology available because of its requirement for frequent re-calibration and mains power.

High resolution SRP monitoring has been made possible in almost any location with the launch by OTT Hydromet of the the ‘HydroCycle PO4’ which is a battery-powered wet chemistry analyser for the continuous analysis of SRP. Typically, the HydroCycle PO4 is deployed into the river for monitoring purposes, but recent work by the Environment Agency has deployed it in a flow-through chamber for measuring extracted water.

The HydroCycle PO4 methodology is based on US EPA standard methods, employing pre-mixed, colour coded cartridges for simple reagent replacement in the field. Weighing less than 8kg fully loaded with reagents, it is quick and easy to deploy, even in remote locations. The instrument has an internal data logger with 1 GB capacity, and in combination with telemetry, it provides operators with near real-time access to monitoring data for SRP.

The quality of the instrument’s data is underpinned by QA/QC processing in conjunction with an on-board NIST standard, delivering scientifically defensible results. Engineered to take measurements at high oxygen saturation, and with a large surface area filter for enhanced performance during sediment events, the instrument employs advanced fluidics, that are resistant to the bubbles that can plague wet chemistry sensors.

Environment Agency application
The National Laboratory Service Instrumentation team (NLSI) provides support to all high resolution water quality monitoring activities undertaken across the Agency, underpinning the EA’s statutory responsibilities such as the WFD, the Urban Waste Water Directive and Statutory Surface Water Monitoring Programmes. It also makes a significant contribution to partnership projects such as Demonstration Test Catchments and Catchments Sensitive Farming. Technical Lead Matt Loewenthal says: “We provide the Agency and commercial clients with monitoring systems and associated equipment to meet their precise needs. This includes, of course, nutrient monitoring, which is a major interest for everyone involved with water resources.”

Matt’s team has developed water quality monitoring systems that deliver high resolution remote monitoring with equipment that is quick and easy to deploy. There are two main options. The ‘green box’ is a fully instrumented cabinet that can be installed adjacent to a water resource, drawing water and passing it though a flow-through container with sensors for parameters such as Temperature Dissolved Oxygen, Ammonium, Turbidity, Conductivity pH and Chlorophyll a. Each system is fitted with telemetry so that real-time data is made instantly available to users on the cloud.

Conscious of the need to better understand the role of P in rivers, Matt’s team has integrated a HydroCycle PO4 into its monitoring systems as a development project.
Matt says: “It’s currently the only system that can be integrated with all of our remote monitoring systems. Because it’s portable, and runs on 12 volts, it has been relatively easy to integrate into our modular monitoring and telemetry systems.

“The HydroCycle PO4 measures SRP so if we need to monitor other forms of P, we will use an auto sampler or deploy a mains-powered monitor. However, monitoring SRP is important because this is the form of P that is most readily available to algae and plants.”

Explaining the advantages of high resolution P monitoring, Matt refers to a deployment on the River Dore. “The data shows background levels of 300 µg P/l, rising to 600 µg P/l following heavy rain, indicating high levels of P in run-off.”

Similar to phosphates, excessive nitrate levels can have a significant impact on water quality. In addition, nitrates are highly mobile and can contaminate groundwater, with serious consequences for wells and drinking water treatment. Nitrate concentrations are therefore of major interest to the EA, but traditional monitoring technology has proved inadequate for long-term monitoring because of a frequent recalibration requirement. To address this need, which exists globally, OTT Hydromet developed the SUNA V2, which is an optical nitrate sensor, providing high levels of accuracy and precision in both freshwater and seawater.

The NLSI has evaluated the SUNA V2 in well water and Matt says: “It performed well – we took grab samples for laboratory analysis and the SUNA data matched the lab data perfectly. We are therefore excited about the opportunity this presents to measure nitrate continuously, because this will inform our understanding of nitrate pollution and its sources, as well as the relationship between groundwater and surface water.”

The new capability for high-resolution monitoring of nutrients such as phosphorus will enable improved understanding of its effects on ecological status, and in turn will inform decisions on what acceptable P concentrations will be for individual rivers. This is vitally important because the cost of removing P from wastewater can be high, so the requirements and discharge limits that are placed on industrial and wastewater companies need to be science based and supported by reliable data. Similarly, nitrate pollution from fertilizer runoff, industrial activities and wastewater discharge, has been difficult to monitor effectively in the past because of the technology limitations. So, as improved monitoring equipment is developed, it will be possible to better understand the sources and effects, and thereby implement effective prevention and mitigation strategies.

@OTTHydrometry @EnvAgency @CEHScienceNews #Water #Environment

Inertial Measurement Unit – essential in self-driving cars!

They are here or on the way – the self-driving car! It is one of revolutions which could change lives in the 21st century. Here Mike Horton, Chief Technical Officer at ACEINNA discusses seven reasons your life depends on an accurate IMU (Inertial Measurement Unit) in these self-driving cars.

An inertial measurement unit (IMU) is a device that directly measures the three linear acceleration components and the three rotational rate components (6-DOF) of a vehicle. An IMU is unique among the sensors typically found in an autonomous vehicle because an IMU requires no connection or knowledge of the external world.

A self-driving car requires many different technologies, for example — LIDAR to create a precise 3-D image of the local surroundings, radar for ranging targets using a different part of the EM spectrum, cameras to read signs and detect color, high-definition maps for localization, and more. Unlike the IMU, each of these technologies involves the external environment in order to provide data back to the software stack for localization, perception, and control. This unique “independent” property of the IMU, makes it a core technology for both safety and sensor-fusion.

An Accurate IMU can Mitigate Issues in RED

The following of Seven Top Reasons is just a start, additional reasons and benefits of an accurate IMU are welcomed as responses to this post either as comments or direct to the author himself at ACCEINNA.

•1 Safety First
The system engineer needs to consider every scenario and always have a back up plan. Failure Mode Effects Analysis (FMEA) formalizes this requirement into design requirements for risk mitigation. FMEA will ask what happens if the LIDAR, Radar, and Cameras all fail at the same time? An IMU can dead-reckon for a short period of time, meaning it can determine full position and attitude independently for a short while. An IMU alone can slow the vehicle down in a controlled way and bring it to a stop … providing the best practical outcome in a bad situation. While this may seem like a contrived requirement, it turns out to be a fundamental one to a mature safety approach.

•2 A Good Attitude
An accurate IMU can determine and track attitude precisely. We often think of a car’s position or location, but when driving the direction or heading is equally crucial. Driving the slightly wrong direction even for a brief instant, will put you in the wrong lane. Dynamic control of the vehicle requires sensors with dynamic response, and an accurate IMU does a nice job of tracking dynamic attitude and position changes accurately. Due to its fully environment independent nature, an IMU can even track the really tricky cases such as the slipping and skidding where tires lose traction. A precise attitude measurement is often useful an input into other algorithms. While LIDAR and Cameras can be useful in determining attitude, GPS is often pretty useless. Finally, a stable independent attitude reference has value in calibration and alignment.

•3 Accurate Lane Keeping

During turns, an accurate IMU plays a key role in lane keeping

It turns out when humans are not distracted or drunk, we are typically not bad at driving. A typical driver can hold their position in a lane to better than 10cm. This is actually really tight. If an autonomous vehicle wanders in its lane, then it will appear to be a bad driver. As an example during a turn, poor lane keeping could easily result in an accident. The IMU is a key dynamic sensor to steer the vehicle dynamically, moreover the IMU can maintain a better than 30cm accuracy level for short periods (up to ten seconds) when other sensors go offline. The IMU is also used in algorithms that can cross compare multiple ways to determine position/location and then assign a certainty to the overall localization estimate. Without the IMU, it maybe impossible to even know when the location error from a LIDAR solution has degraded

•4 LIDAR is Still Expensive
Tesla is famous for its “No LIDAR Required” approach to autopilot technology. If you don’t have LIDAR, a good IMU is even more critical because camera-based localization of the vehicle will have more frequent periods of low-accuracy simply depending on what is in the camera scene or the external lighting conditions. Camera based localization uses “SIFT” feature tracking in the captured images to compute attitude. If the camera is not stereo (often the case) inertial data from the IMU itself is also a core part of the math to compute the position and attitude in the first place.

•5 Compute is not Free
The powerful combination of high-accuracy LIDAR and high-definition maps is at the core of the most advanced Level 4 self-driving approaches such as those being tested by Cruise and Waymo. In these systems LIDAR scans are in real-time matched to the HD map using convolutional signal processing techniques. Based on the match, the precise location of vehicle and attitude is estimated. This process is computationally expensive. While we all like to believe the cost of compute is vanishingly small, on a vehicle it simply is not that cheap. The more accurately the algorithm knows its initial position and attitude, the less computation required to compute the best match. In addition, by using IMU data, the risk of the algorithm getting stuck in a local minimum of HD map data is reduced.

•6 GPS/INS: Making High-Accuracy GPS Work
In today’s production vehicles GPS systems use low-cost single-frequency receivers. This makes the GPS accuracy pretty useless for vehicle automation. However, low-cost multi-frequency GPS is on the way from several silicon suppliers. On top of this upcoming silicon, network-based correction solutions such as RTK and PPP can provide GPS fixes to centimeter level accuracy under ideal conditions. However, these solutions are very sensitive to the environment — such as bridges, trees, and buildings. It is well established that the way to overcome this challenge and improve precisions GPS reliability is to use high-accuracy IMU aiding at a low-level in the position solution. Such GPS/INS techniques include tightly-coupled and ultra-tightly-coupled GPS/INS. These are coming soon to the automotive market (stay tuned for exciting updates).

•7 Car’s Already Need an IMU
Turns out production automobiles already have anywhere from 1/3 of an IMU to a full IMU on board. Vehicle stability systems rely heavily on a Z-axis gyro and lateral X-Y accelerometers. Roll-over detection relies on a gyro mounted with its sensitive axis in the direction of travel. These sensors have been part of the vehicles safety systems for over a decade now. The only problem is that the sensor accuracy is typically too low to be of use for the prior six uses cases. So why not upgrade the vehicle to a high-accuracy IMU and help it drive autonomously? The main barrier has been cost.
Aceinna along with other companies in the industry are working hard to remove the cost barrier.

Pushing the boundary of price-performance

@MEMSsensortech #Automotive

Ensuring accurate pigment dispensing.


PD Edenhall Ltd is one of the largest independent concrete facing brick manufacturers in Britain. They needed to accurately monitor the quantity of pigment being dispensed into the weigh hopper throughout the manufacture of concrete facing bricks.

Precise pigment dispensing needs to be calculated as inaccurate amounts of pigment can lead to incorrect colour blends, resulting in a loss of sales and profit.

Solution – Accurate DBBSM S-Beam Load Cells and Intuitive4-L Digital Indicator
To monitor the quantity of pigment going into the blend, 3x DBBSM S-beam load cells were connected together to the supports of the pigment weigh hopper.  The DBBSM S-beam load cells checked the load of the pigment weigh hopper throughout the pigment dispensing process and the outputs of the load cells were sent to an Intuitive4 load cell digital indicator.  This enabled the engineers to constantly check the correct amount of pigment was being dispensed into the mix.

“We chose Applied Measurements’ DBBSM s-beam load cells as the pigment is £1000 per tonne so has to be extremely accurate.” Paul Akers, Works Manager at PD Edenhall Ltd told us.

DBBSM S-Beam Load Cells

  • Capacities: 0-1kg up to 0-30,000kg
  • Force & Load Measuring
  • Tension & Compression
  • Output: 2mV/V to 2.7mV/V
  • High Accuracy: <±0.03% Rated Capacity
  • Custom Versions Available
  • Fast and Simple to Install

The DBBSM S-beam load cells were ideal to use in this application as they are extremely accurate of better than ±0.03% of the rated capacity.  Coupled with their dual bending beam design, they guarantee excellent accuracy.  Improved accuracy can be further guaranteed by using our specially designed rod end bearings to help reduce any extraneous forces.

They offer an optional sealing to provide protection in the dusty environment and a robust 4-core polyurethane cable, making them ideal to use in the pigment dispensing machine.

Intuitive4-L Load Cell Digital Indicator

  • 6-Digit LED Display (±199999)
  • Modular Construction
  • Fast & Simple to Setup
  • Ideal for Harsh Environments – Dust Tight IP65 Protection (Once Installed)
  • Superior Accuracy – 10 Point Linearisation
  • Higher Stability – Signal Filtering Adjustment
  • Improved Resolution – 20-bit A/D Converter
  • Compatible with the INT2 Series
  • 10Vdc Load Cell Excitation @ 120mA max.
  • Powers up to 4x 350Ω Load Cells
  • Available in Less Than 1 Week

The Intuitive4-L load cell digital indicator was chosen for this application as superior accuracy was needed due to the high cost of the yellow pigment.  The intuitive4-L boasts a 10 point linearisation guaranteeing outstanding accuracy coupled with a 20-bit A/D converter for high resolution.  High stability is promised with signal filtering adjustment options which reduce the effect of noise or instability of the input signal.  Plus, it benefits from an active filter which reduces the effects of vibration and other external sources of system noise.

The intuitive4-L load cell digital indicator is fast and simple to setup with its single layer menu making the options easier to find.  Dimensions and fittings are entirely compatible with the existing Intuitive2 models making the switch over to this new improved version even easier.

Once installed the intuitive4-L load cell digital indicator has an IP65 dust tight protection rating making it ideal to use in this harsh construction environment.  If that’s not enough we can also provide an optional waterproof front panel cover for that extra level of protection.

The intuitive4-L digital panel meter has a modular construction meaning that PD Edenhall Ltd could configure it to their exact specification saving them money.  Options available include voltage or current analogue outputs, 2 or 4 alarm relays and a serial data output in one of several formats including RS232 ASCII, RS485 ASCII and RS485 ModBus RTU, making this a truly flexible load cell digital indicator.

@AppMeas #PAuto @EdenhallUK

The world of virtual commissioning.

Robert Glass, global food and beverage communications manager at ABB explores the concept of virtual commissioning and how system testing can benefit the food industry.

In 1895, pioneer of astronautic theory, Konstantin Tsiolkovsky, developed the concept of the space elevator, a transportation system that would allow vehicles to travel along a cable from the Earth’s surface directly into space. While early incarnations have proven unsuccessful, scientists are still virtually testing new concepts.

Industry 4.0 continues to open up new opportunities across food and beverage manufacturing. In particular, these technologies help improve manufacturing flexibility and the speed and cost at which manufacturers are able to adapt their production to new product variations. Virtual commissioning is one of these key technologies.

What is virtual commissioning?
Virtual commissioning is the creation of a digital replica of a physical manufacturing environment. For example, a robotic picking and packing cell can be modeled on a computer, along with its automation control systems, which include robotic control systems, PLCs, variable speed drives, motors, and even safety products. This “virtual” model of the robot cell can be modified according to the new process requirements and product specifications. Once the model is programmed, every step of that cell’s operation can be tested and verified in the virtual world. If there are changes that are needed in the process automation or robot movement, these can be made on the same computer, allowing the robot to be reprogrammed, orchanges made to the variable speed drives and PLC programming. The ABB Ability™ RobotStudio is one tool that enables this type of virtual commissioning.

Once reprogrammed, the system is tested again and if it passes, it’s ready for physical deployment. This is where the real benefits become tangible. By using virtual commissioning to program and test ahead of time, less process downtime is required and manufacturers can reduce the changeover risks.

Automation programming and software errors in a system can be incredibly difficult and costly to rectify, particularly if they are found later on in the production process. Research by Austrian software testing frim Tricentis, estimated that software bugs, glitches and security failures cost businesses across the world $1.1 trillion.

To achieve the full potential of virtual commissioning, the simulation must be integrated across the entire plant process, including both the planning and engineering phase. Known as simulation-based engineering, this step is integral for the installation of reliable systems. The use of simulations in a plant is not a new concept, in fact virtual commissioning has been researched for more than a decade.

The benefits
The implementation of virtual commissioning brings with it a number of benefits. The ‘try before you buy’ concept allows plant managers to model and test the behavior of a line before making any physical changes. This saves time as the user can program the system’s automation while testing and fixing errors. The use of a digital model can also reduce risk when changing or adding processes.

One company which has seen significant improvements in production since investing in virtual commissioning is Comau, a supplier of automotive body and powertrain manufacturing and assembly technologies. Comau’s head of engineering and automation systems, Franceso Matergia, said: “We were able to reprogram 200 robots in just three days using virtual commissioning as opposed to roughly 10 weekends had the work been done on the factory floor.”

Just as you wouldn’t build a space elevator without meticulous planning and years of small scale prototyping, it’s very cost and time beneficial to build and test in a virtual environment where you can find the bugs and discover the unforeseen challenges and mitigate them without added downtime or loss of production. It’s much better to discover that bug while on the ground versus at 100,000 feet midway between the surface of the earth and that penthouse in space.

@ABBgroupnews #PAuto @StoneJunctionPR

Monitoring and managing the unpredictable.

Energy sector investments in big data technologies have exploded. In fact, according to a study by BDO, the industry’s expenditure on this technology in 2017 has increased by ten times compared to the previous year, with the firm attributing much of this growth to the need for improved management of renewables. Here, Alan Binning, Regional Sales Manager at Copa-Data UK, explores three common issues for renewables — managing demand, combining distributed systems and reporting.

Renewables are set to be the fastest-growing source of electrical energy generation in the next five years. However, this diversification of energy sources creates a challenge for existing infrastructure and systems. One of the most notable changes is the switch from reliable to fluctuating power.

Implementing energy storage
Traditional fossil-fuel plants operate at a pre-mitigated level, they provide a consistent and predictable amount of electricity. Renewables, on the other hand, are a much more unreliable source. For example, energy output from a solar farm can drop without warning due to clouds obscuring sunlight from the panels. Similarly, wind speeds cannot be reliably forecasted. To prepare for this fluctuation in advance, research and investment into energy storage systems are on the rise.

For example, wind power ramp events are a major challenge. Therefore, developing energy storage mechanisms is essential. The grid may not always be able to absorb excess wind power created by an unexpected windspeed increase. Ramp control applications allow the turbine to store this extra power in the battery instead. When combined with reliable live data, these systems can develop informed models for intelligent distribution.

Britain has recently become home to one of the largest energy storage projects to use EV batteries. While it is not the first-time car batteries have been used for renewable power, the Pen y Cymoedd wind farm in Wales has connected a total of 500 BMW i3 batteries to store excess power.

Combining distributed systems
Control software is the obvious solution to better monitor this fluctuating source of power. However, many renewable energy generation sites, like solar PV and wind farms, are distributed across a wide geographical scope and are therefore more difficult to manage without sophisticated software.

Consider offshore wind farms as an example. The world’s soon-to-be-largest offshore wind farm is currently under construction 74.5 miles off the Yorkshire coastline. To accurately manage these vast generation sites, the data from each asset needs to be combined into a singular entity.

This software should be able to combine many items of distributed equipment, whether that’s an entire wind park or several different forms of renewable energy sources, into one system to provide a complete visualisation of the grid.

Operators could go one step further, by overlaying geographical information systems (GIS) data into the software. This could provide a map-style view of renewable energy parks or even the entire generation asset base, allowing operators to zoom on the map to reveal greater levels of detail. This provides a full, functional map enabling organisations to make better informed decisions.

Reporting on renewables
Controlling and monitoring renewable energy is the first step to better grid management. However, it is what energy companies do with the data generated from this equipment that will truly provide value. This is where reporting is necessary.

Software for renewable energy should be able to visualise data in an understandable manner so that operators can see the types of data they truly care about. For example, wind farm owners tend to be investors and therefore generating profit is a key consideration. In this instance, the report should compare the output of a turbine and its associated profit to better inform the operator of its financial performance.

Using intelligent software, like zenon Analyzer, operators can generate a range of reports about any information they would like to assess — and the criteria can differ massively depending on the application and the objectives of the operator. Reporting can range from a basic table of outputs, to a much more sophisticated report that includes the site’s performance against certain key performance indicators (KPIs) and predictive analytics. These reports can be generated from archived or live operational data, allowing long term trends to be recognised as well as being able to react quickly to maximise efficiency of operation.

As investments in renewable energy generation continue to increase, the need for big data technologies to manage these sites will also continue to grow. Managing these volatile energy sources is still a relatively new challenge. However, with the correct software to combine the data from these sites and report on their operation, energy companies will reap the rewards of these increasingly popular energy sources.

Challenges facing energy industry sector.


Leaders from Britain’s  energy industry attended Copa Data’s  zenon Energy Day 2018 at the Thames Valley Microsoft centre. The event, which was held on in April 2018, welcomed industry experts and energy suppliers to address the current challenges the sector is facing — renewable generation, substation automation, IoT and cyber security.


A welcome speech from the British MD od Copa Data , Martyn Williams, started a day encompassed a series of talks from industry experts. Speakers included Ian Banham, IoT Technical Sales Lead UK for Microsoft, Chris Dormer of systems integrator, Capula and Jürgen Resch, Copa Data Energy Industry Manager.

Preparing for renewables
Only 24 per cent of Britain’s electricity comes from renewable sources — a relatively low figure compared to some European countries.  However, the percentage is growing. In 2000, Britain’s renewable capacity was 3,000 MW, and rose eleven-fold by the end of 2016 to 33,000 MW.

To prepare for the impending challenges for this market, Jürgen Resch’s presentation discussed how software can alleviate some of the common questions associated with renewable energy generation, including the growing demand for energy storage.
“Energy storage is often used in combination with renewables because renewable energy is volatile and fluctuating,” explained Resch. “In Korea, the government is pumping $5 billion dollars into energy storage systems. In fact, every new building that is built in Korea gets an energy storage battery fitted into the basement.”

BMW’s battery storage farm in Leipzig (D) was also presented as an example. The facility, which uses COPA-DATA’s zenon as the main control centre system, uses 700 high-capacity used battery packs from BMW i3s and could also provide storage capacity for local wind energy generation.

Moving onto specific issued related to wind generation, Resch discussed the potential challenge of reporting in a sector reliant on unpredictable energy sources.
“Reports are particularly important in the wind power industry,” he said. “Typically, owners of wind farms are investors and they want to see profits. Using software, like zenon Analyzer, operators can generate operational reports.

“These reports range from a basic table with the wind speeds, output of a turbine and its associated profit, or a more sophisticated report with an indication of the turbines performance against specific key performance indicators (KPIs).”

Best practice for substation automation
Following the morning’s keynote speeches on renewable energy, Chris Dormer of Capula, presented the audience with a real-life case study. The speech discussed how smart automation helped to address significant issues related to the critical assets of the National Grid’s substations, where Capula was contracted to refurbish the existing substation control system at New Cross.

substn“Like a lot of companies that have developed, grown and acquired assets over the years, energy providers tend to end up with a mass mixture of different types of technology, legacy equipment and various ways to handling data,” explained Dormer. “For projects like this, the first key evaluation factor is choosing control software with legacy communication. We need to ensure the software can talk to both old legacy equipment in substations as well as modern protocol communications, whilst also ensuring it was scalable and compliant.

“The National Grid will make large investments into IEC 61850 compatible equipment, therefore for this project, we needed an IEC 61850 solution. Any system we put in, we want to support it for the next 25 years. Everyone is talking about digital substations right now, but there are not that many of them out there. That said, we need to prepare and be ready.”

The case study, which was a collaborative project with COPA-DATA, was recognised at the UK Energy Innovation Awards 2017, where it was awarded the Best Innovation Contributing to Quality and Reliability of Electricity Supply.

“Our collaboration with COPA-DATA allows us to address modern energy challenges,” explained Mark Hardy, Managing Director of Capula upon winning the award last year. “It helps drive through the best value for energy customers.”

Cyber security – benefit or burden?
“Raise your hand if you consider cyber security to be a benefit?” Mark Clemens, Technical Product Manager at Copa Data asked the audience during his keynote speech on cyber security. “Now, raise your hand if you consider it to be a burden?”

substn2Clemens’ question provided interesting results. Numerous attendees kept their hands raised for both questions, giving an insight into the perception of cyber security for those operating in the energy industry — a necessary evil.

“A cyber-attack on our current infrastructure could be easy to execute,” continued Clemens. “95 per cent of communication protocols in automation systems don’t provide any security features. For those that do provide security, the mechanisms are often simply bolted-on.”

Clemens continued to explain how substation design can strengthen the security of these sites. He suggested that, despite living in the era of IoT, energy companies should limit the communication between devices to only those that are necessary. The first step he suggested was to establish a list of assets, including any temporary assets like vendor connections and portable devices.

“There are lots of entry points into a substation, not only through the firewall but through vendors and suppliers too. This doesn’t have to be intentional but could be the result of a mistake. For example, if an engineer is working in the substation and believe they are testing in simulation mode, but they are not, it could cause detrimental problems.”

Collaborating with Microsoft
The address of Microsoft’s UK IoT Technical Sales Lead, Ian Banham focused on the potential of cloud usage for energy companies. When asking attendees who had already invested in cloud usage, or planned on doing so, the audience proved to be a 50:50 split of cloud enthusiasts and sceptics.

“IoT is nothing new,” stated Ian Banham, IoT Technical Sales Lead at Microsoft. “There’s plenty of kit that does IoT that is over 20 years old, it just wasn’t called IoT then. That said, there’s not a great deal of value in simply gathering data, you’ve got to do something with that data to realise the value from it.

“The change in IoT is the way the technology has developed. That’s why we are encouraging our customers to work with companies like COPA-DATA. They have done the hard work for you because they have been through the process before.”

He explained how Microsoft’s cloud platform, Azure, could be integrated with COPA-DATA’s automation software, zenon. In fact, COPA-DATA’s partnership with Microsoft is award-winning, COPA-DATA having won Microsoft Partner of the Year in the IoT category in 2017.

@copadata #PAuto @Azure #Cloud #IoT

On the road with IoT.


How the field service management sector is being changed by IoT

George Walker, managing director Novotek, explains how the Internet of Things (IoT) is changing field service. As more companies move to a predictive model of equipment maintenance, they are looking for ways to use connected devices to improve field service.

Before internet-connected devices were the norm, it was common for facilities managers and in-house maintenance staff to spend time on the phone with suppliers booking in a suitable time for repairs to be carried out. It might have taken hours, if not days, for an engineer to come out to the site — leading to potential downtime in the interim.

When the technician came to the site, they may have found that they didn’t have the right tools, the right parts, or even the specific knowledge to carry out the service needed. This would mean the same technician would have to go back, or a second technician would need to come out to complete the service.

Although this model has been the norm for many years, it is no longer feasible in a modern environment. Factors such as first-time fix rates, mean time to repair and overall efficiency are driving businesses to closely monitor resource allocation and the time spent on maintenance.

Field service management has traditionally been responsible for activities such as locating fleet vehicles, scheduling maintenance work-orders and dispatching personnel. However, the advent of the IoT means that much of this model is shifting to real-time, predictive maintenance and those companies that adapt their businesses will benefit the most from the resulting competitive advantage.

The number of connected IoT devices is set to surge in the next few years, going from 27 billion in 2017 to an estimated 125 billion in 2030, according to analysis firm IHS Markit. Sensors can not only help engineers to remotely diagnose problems in many instances, they can also help to remotely repair or prevent further damage to equipment.

However, hardware sensors are just the start. Better software will help businesses to truly realise the potential of IoT in field service management. Modern field servicing software needs to go beyond the basics and offer better wider integration with the company’s inventory, billing and enterprise resource planning (ERP) systems.

This is why we’ve partnered with the leading vendor in the industry to help our customers achieve better results. Novotek is the sole distributor of GE’s ServiceMax field servicing software in Britain and Ireland. ServiceMax creates solutions for the people who install, maintain and repair machines across dozens of industries, as the leading provider of complete end-to-end mobile and cloud-based technology.

The results speak for themselves. In a recent survey of ServiceMax customers in March 2018, technicians and engineers were 19 per cent more productive, service costs went down by 9 per cent and service revenue increased by 10 per cent. In addition to this, customers saw contract renewals increase by 11 per cent, mean time-to-repair decrease 13 per cent and equipment uptime improve by 9 per cent — leading to customers being 11 per cent more satisfied. Overall, compliance incidents dropped by 13 per cent.

By sending the right technician to the right job, at the right time, you avoid situations where some technicians are overloaded, while others have white space in their schedules. Using an app that works across devices, technicians can request jobs from anywhere. Each service level agreement (SLA) is easily managed and field service reports are easily produced.

What was science fiction a mere five years ago is now reality. A machine on a customer site can send an alert to the service team warning them of an imminent failure and potential downtime. Technicians can then be proactively dispatched to site with the right parts to carry out urgent repairs and mitigate costly downtime.

IoT has already drastically changed other sectors of the industrial landscape and is now making waves in the field service management sector. Whether you’re a utility business, a healthcare provider or even a telecoms business, it’s about time you looked at how IoT will change field servicing for you.

@Novotek #PAuto #IIoT @StoneJunctionPR