Future factory – a moderator’s impression!

01/02/2016

Read-out was asked to moderate the automation stream at the National Manufacturing & Supplies conference held last week outside Dublin. (26th January 2016). In their wisdom the organisers selected “Future Factory!” as a title for this half day seminar and there were 11 speakers organised to speak on their particular subjects for about 15 minutes each. This was replicated in the the over a dozen different seminars held on this one day.

q#MSC16

Long queues lasted well into the morning to enter the event!

We were a little sceptical that this would work but with the help of the organisers and the discipline of the speakers the time targets were achieved. Another target achieved was the number of attendees at the event as well as those who attended this particular seminar.
In all between exhibitors, speakers and visitors well over 3000 packed the venue. Probably far more than the organisers had anticipated and hopefully a potent sign that the economy is again on the upturn. Indeed it was so successful that it was trending (#MSC16) on twitter for most of the day.

Seminar
But back to our seminar. If you google the term Future Factory you get back 207million links, yet it is difficult to find a simple definition as to what it means. The term automation similarly is a very difficult term to define though the term in Irish “uathoibriú” perhaps is a bit clearer literally meaning “self-working.”

uturefactory.jpg

Good attendance at the Seminar

Background
The world of automation has changed to an extrordinary degree and yet in other ways it remains the same. The areas where it has experienced least change is in the areas of sensing – a thermometer is a thermometer – and final control – a valve is a valve. Where it has changed almost to the point of unrecognisability is in that bit in the middle, what one does with the signal from the sensor to activate the final control element.

From single parameter dedicated Indicator/Controller/Recorders in the sixties which transmitted either pnuematically (3-15psi) or electrically (4-20mA). Gradually (relatively speaking) most instruments became electronic, smaller in size and multifunctional. The means of communication changed too and fieldbus communication became more common to intercact with computors which themselves were developing at breaknech speed. Then transmission via wireless became more common and finally the internet and the ability to control a process from the computer that we call the intelligent phone. There are problems with these latter, internet/cellphone, of course. One is that the reach of the internet is focussed at present on areas of high population. Another is the danger of infiltration of systems by hostile or mischivous strangers. The importance of security protocols is one that has only recently been apparent to Automation professionals.

• Many of the presentations are available on-line here. The password is manufac2016

The Presentations
Maria Archer of Ericsson spoke on the enabling and facilitating IoT in the manufacturing industry. Diving straight into topic she drew on her experience of big data, e-commerce, media, cyber security, IOT and connected devices.

The second speaker was Cormac Garvey of Hal Software who addressed Supply Chain prototyping. The Supply Chain ecosystem is incredibly complex, usually requiring significant integration of each suppliers’ standards and processes to the manufacturer’s. Cormac will introduce the concept of supply chain prototyping, where easy-to-use, standards-based technology is used to wireframe out the entire supply chain ecosystem prior to integration, thus significantly reducing cost, time and risk on the project. This wireframe can then be used as a model for future integration projects.

Two speakers from the Tralee Institute of Technology, Dr. Pat Doody and Dr. Daniel Riordan spoke on RFID, IoT, Sensor & Process Automation for Industry 4.0. They explained how IMaR’s (Intelligent Mechatronics and RFID) expertise is delivering for their industrial partners and is available to those aiming to become a part of Industry 4.0.

Smart Manufacturing – the power of actionable data was the topic addressed by Mark Higgins of Fast Technology. He shared his understanding of the acute issues companies face on their journey to Business Excellence and how leveraging IT solutions can elevate the business to a new point on that journey.

Assistant Professor (Mechanical & Manuf. Eng) at TCD, Dr Garret O’Donnell,   explained how one of the most significant initiatives in the last 2 years has been the concept of the 4th industrial revolution promoted by the National Academy for Science and Engineering in Germany- ACATECH, known as Industrie 4.0. (Industrie 4.0 was first used as a term in Germany in 2011).

Another speaker from Fast Technologies, Joe Gallaher, addressed the area of Robotics and how Collaborative Robots are the “Game Changer” in the modern manufacturing facility.

Dr. Hassan Kaghazchi of the University of Limerick and Profibus spoke on PROFINET and Industrie 4.0. Industrial communications systems play a major role in today’s manufacturing systems. The ability to provide connectivity, handle large amount of data, uptime, open standards, safety, and security are the major deciding factors. This presentation shows how PROFINET fits into Industrial Internet of Things (Industrie 4.0).

White Andreetto

Maurice Buckley CEO NSAI

The CEO of NSAI, the Irish National Standards Authority, Maurice Buckley explained how standards and the National Standards Authority of Ireland can help Irish businesses take advantage of the fourth industrial revolution and become more prepared to reap the rewards digitisation can bring.

The next two speakers stressed the impact of low forecast accuracy on the bottom line and how this coulbe be addressed. Jaap Piersma a consultant with SAS UK & Ireland explained that low forecast accuracies on the business performance is high in industry but with the right tools, the right approach and experienced resources you can achieve very significant result and benefits for your business. Following him Dave Clarke, Chief Data Scientist at Asystec, who mantains the company strategy for big data analytics service development for customers. He showed how are incredible business opportunities possible by harnessing the massive data sets generated in the machine to machine and person to machine hyper connected IoT world.

The final speaker David Goodstein, Connected Living Project Director, GSMA, described new form factor mobile SIMs which are robust, remotely manageable which are an essential enabler for applications and services in the connected world.

All in all a very interesting event and useful to attendees. Papers are being collected and should be available shortly on-line.

It is hoped to do it all again next year on 24th January 2017- #MSC17.

See you there.

@NationalMSC #MSC16 #PAuto #IoT


The future of regulatory compliance in the pharmaceutical industry.

29/01/2016

In this short article, Martyn Williams, managing director of Copa-Data in Great Britain, explains the steps pharmaceutical manufacturers can take on the road to compliance.

The pharmaceutical industry today operates in one of the world’s most heavily regulated environments. Over the past few years, the industry has experienced significant regulatory change and looking to the future, the strict nature of the industry doesn’t appear to be slacking.

COP174The repercussions of failing to comply with industry standards can be detrimental for pharmaceutical manufacturers. It’s no secret that the integrity and reputation of pharmaceutical brands is integral to their success. As a result, even the smallest failure can be irreversibly damaging.

With industry standards surrounding crucial elements like product integrity, energy efficiency, health and safety and product testing, there is more pressure than ever to ensure manufacturers begin to take steps towards compliance. In this elaborate regulations landscape, how do manufacturers ensure production operates in an efficient and effective way?

Validation-friendly technology
Digitization of processes and the emergence of Industrial Internet of Things (IIoT) has transformed the entire manufacturing industry. However, for pharmaceutical manufacturers, the benefits of IIoT have far surpassed an increase in automated productivity.

The introduction of smart devices enables real-time data reporting to central control systems. Naturally reducing manual intervention and minimising adverse events during production. Paired with validation friendly software, an IIoT enabled factory provides live monitoring of regulatory reporting, potentially reducing the validation efforts many manufacturers face with a risk-based approach. This can greatly help to maximise production agility, allowing manufactures to respond to change and ultimately increase profitably.

For example, with batch control being a key step of the validation process, the combination of a smart factory and intelligent SCADA software couldn’t be more valuable. Automatically generating a trail of reliable audits, electronic signatures and real-time reporting, complicated pharmaceutical standards like FDA 21 CFR Part 11 are not so difficult to obtain.

The cloud and compliance
As manufacturers embrace IIoT, migrating to the cloud is the obvious solution to house and manage the growing expanse of production data. However, the cloud does more than just collect and store data, it allows manufacturers to gain actionable insights, directly from it.

Predictive analysis, for example, produces an intelligent forecast of when and where industrial equipment is most likely to fail. Using this data, contingency plans can be made to ensure, regardless of equipment failure, pharmaceutical production will continue to meet regulatory standards.

In addition, cloud computing enables simplified regulatory submissions. Using data stored in the cloud, manufacturers can directly feed digitised production information to regulatory bodies. This feature can be particularly helpful speeding up the lengthy process of clinical trials as well as post drug launch.

With the ever increasing risks concerning drug counterfeiting, efficiency challenges, adaptations to modern day agile processes and the industry-wide efforts to implement serialisation, it will be interesting to witness how IIoT can continue to solve these challenges moving forward.

Getting the green light
Over the past decade, the global focus on environmental sustainability has been hard to ignore. In industry, initiatives such as the European Union’s Energy Savings Opportunity Scheme (ESOS) and the voluntary certification ISO 50001, have put pressure on manufacturers to jump on the efficiency bandwagon. Using the same IIoT and smart software combination, organisations can gather comprehensive data from the entire factory and subsequently meet these efficiency requirements.

@copadata #PAuto #PHarma

It’s the little things that trip you up!

22/01/2016
By Brian Booth, VP of the Water Treatment Innovation Platform, NCH Europe

There’s a lot of chemistry, physics and maths involved in perfecting your water treatment solution. To make sure you successfully treat and protect your system you need to get the equilibrium right, and this relies on balancing all the appropriate equations – even the little things you may not give much thought to. Missing something like half life out of your planning can have serious negative implications for your water treatment, especially when it comes to complying with regulations such as those for Legionella control.

When dosing your water cooling system with biocides it’s imperative that the concentration is correct and that it remains at a continuous concentration for a suitable period of time. While this sounds simple, it’s easy to forget that any bleed water required to compensate for water that may evaporate out of a system, will take a portion of your biocide with it.

Say you put 10 tonnes of make-up water into your system, and every hour 1 tonne runs off as bleed water, this will determine the half life for your system. So for example, let’s imagine the chemical you are using to meet the Government’s Health and Safety Executive (HSE) Legionella control L8 Code of Practice needs to remain at a concentration of 100 parts per million (ppm) for three hours to be successful.

If you just dose 100ppm and walk away, the concentration will gradually fall from the time of dosing and will not remain high enough for long enough as the bleed water will take a portion away with it. This will result in a failure to meet the regulation, making you negligent and leaving you liable.

This is why it’s vital to be aware of half life so that you can increase the dose of your biocide accordingly. Do you know how many hours it would take to reduce a 100ppm dose to 50ppm in your water cooling system?

Although it’s hard to be 100 per cent accurate, you can work out your half life with this simple equation:

 

Half_Life_hours.jpg

If you know your biocide is going to take three hours to be effective, but the half life of your system is one hour you’re going to have to make some adjustments to maintain appropriate concentration. For instance, using our above example of legionella control biocide, to stay at a minimum of 100ppm for long enough you’ll need to dose to 800ppm.

A bit of predictive mathematics goes a long way towards protecting your water system and keeping you compliant. Don’t let a little thing like half life leave you vulnerable to negligence claims – do the maths first!

Half_life_in_water_treatment


How cloud computing is changing industrial automation.

15/01/2016

Jonathan Wilkins, marketing director of industrial automation supplier European Automation examines how cloud computing is disrupting industrial automation. 

Traditionally, the manufacturing industry has been slow to embrace new technological platforms, but in recent years the introduction and success of cloud computing has meant this technology is becoming vital for manufacturers. 

Adopting_the_cloud

Adopting the cloud!

One of the most notable changes in industry over the last years has come from advancements in remote connectivity. Traditionally, the location of manufacturing facilities was determined by ready access to water, fossil fuels or electricity grids. Today, the cloud allows manufacturers to connect and manage factory operations regardless of their location.

For demanding environments, such as the offshore oil and gas sector, this remote access is particularly valuable. The industry handles large amounts of data, usually sourced from multiple teams in remote locations. Cloud computing enables the communication of complex data between these locations and back to head office to be analysed.

What’s more, as opposed to simply managing their own operations, cloud computing allows manufacturers to manage their partners too. By working closely together and sharing business data with third party suppliers, logistics partners and other associates or manufacturers can form what is known as a ‘community cloud’. This advanced form of cloud computing allows businesses to gain insight to their entire supply chain and creates a secure platform for business partners coordinate their activities, from prototype right through to the finalised product.

Inevitably, with increased access and connectivity comes a higher security risk for manufacturers. These cyber security risks are not necessarily the work of malicious hackers, but can often be simple mistakes made by employees, such as connecting via unsecure networks, exposing the system to viruses or accidental breaches.

Despite these risks, manufacturers have few alternatives that can compete with cloud computing. Without the help of the technology, manufacturers would have to maintain expensive computing hardware and continually add more storage space to archive the ever-growing data from the factory floor.

For many manufacturers, opting for the cloud is a no-brainer. Cloud computing is capable of performing large-scale, complex computing operations for the largest of manufacturers. Even in the unfortunate event that you run out of computing resources on the cloud – a phenomenon known as ‘cloud bursting’ – manufacturers are able to spill the excess workload to an external cloud on an on-demand basis, making cloud computing a much safer and more secure alternative to in-house storage.

Despite these obvious advantages, cloud computing goes far beyond simple data storage. Many industry experts think the Internet of Things (IoT) is the next step towards the fourth industrial revolution or Industry 4.0. IoT simply refers to online connectivity between different industrial devices, meaning that networks of machines within a factory setting can communicate and coordinate with little human intervention. 

But how can IoT possibly thrive without ways to analyse and store the data generated? This is where cloud computing comes in. As manufacturers are forced to embrace new technology such as smart sensors, IoT and 3D printing, the cloud works to support these major industry shifts.


Connection allows expansion modules be added in seconds.

12/01/2016

Peak Production Equipment manufactures a comprehensive range of test equipment, from simple test boxes used by subcontract manufacturers to stand-alone high specification test racks and systems used in the aerospace and other industries.

HartingandPeak

Harting’s har-flex® PCB connector system is a key component in a new versatile interface developed by Peak.

A key element of the company’s offering is the fact that all its test fixtures and interfaces are designed and manufactured in-house, which represents an increasing challenge because of the growing demand for lower-cost test solutions from customers. To accommodate this requirement, Peak needed a robust, computer-controlled interface board containing relay controls and digital inputs and outputs which could be configured flexibly to accept different customers’ test scenarios.

As such boards are not available in the marketplace at a reasonable cost, Peak took on the challenge of producing the board in-house.

HAR_FlexPCBHarting’s har-flex® family is a general-purpose PCB connector series based on a 1.27 mm grid with SMT termination technology. With its straight, angled and cable variants, har-flex® provides connectivity solutions for many different board-to-board and cable-to-board applications.
The different stacking heights of the mezzanine connectors and the flexible IDC connector cable lengths offer a high degree of freedom to the system design. A broad choice of configurations between six and 100 contacts in even-numbered positions is available.

The system had to be compact, low cost, expandable, robust and reliable and cover a wide voltage range, while at the same time incorporating multiple control interfaces, with one interface controlling a range of expansion modules. It also had to be compatible with multiple software drivers, and all the components used in its construction had to be fully traceable.

The solution arrived at by Peak engineers was based around a master interface PCB which acts as the key interface between the controlling PC and all the expansion modules. It is fitted with three interfaces: USB, Ethernet and RS232. The board can be used as a stand-alone controller, or it can be “piggy-backed” onto any expansion module or alternatively connected to expansion modules using a ribbon cable for maximum flexibility. The PCB assembly has a high speed I2C interface, 23 channels of digital I/O and 256 kbits of on-board memory, all controlled by any one of the three control interfaces. The PCB has a wide voltage input range from 7 to 36 V DC, and measures only 100 × 50 mm.

The on-board memory allows storage of data such as test cycles and date of manufacture, while the digital I/O is useful for monitoring sensor inputs and switching indicators and additional relays. The I2C interface is used for all expansion module communications, but can also be used as a stand-alone interface.

A 16-channel high-power SPDT relay board is used as the expansion module. This contains 16 SPDT 12 A, 250 V AC relays for general power switching. The relays can be switched and the status can be read back by the master interface PCB. All relays have LED indication, and the PCB has the same wide voltage input range as the master interface board (7-36 V DC) and measures 100 × 220 mm. Although the relay board can be used for general switching inside test fixtures and systems, it can also be used in many other applications.

HARTING har-flex® connectors were selected for board connectivity due to their small size, robustness and flexibility. They can be used as board-to-board connectors, allowing the master interface PCB to be connected to any expansion module directly; alternatively, the same connector can have a ribbon cable connected to connect subsequent expansion modules.

The small size of the connector allowed Peak to increase the pin count, allowing power lines to be commoned up and all communications and power to be passed down a single ribbon cable. As a result, expansion modules could be added in a matter of seconds.

The har-flex® family is a general-purpose PCB connector series based on a 1.27 mm grid with SMT termination technology. With its straight, angled and cable variants, har-flex® provides connectivity solutions for many different board-to-board and cable-to-board applications.

The different stacking heights of the mezzanine connectors and the flexible IDC connector cable lengths offer a high degree of freedom to the system design. A broad choice of configurations between six and 100 contacts in even-numbered positions is available.


Beyond smoke and mirrors!

07/01/2016

Three things you didn’t know about IIoT examined by Martyn Williams, Managing Director of COPA-DATA UK.

The human brain is a wonderful thing that works tirelessly from the day we are born until the day we die, only stopping on special occasions, like when presenting in front of large audiences. We’ve been studying the brain for many centuries, but we still know relatively little about the trillions of connections that make it work. Creating a road map of the brain is a bit like trying to map out the Industrial Internet of Things (IIoT). IIoT is a concept that has intrigued industry for several years now, but much like the human brain, is not yet fully understood.

COP146_3 things-IIoTTo gain a better understanding of the IIoT universe, we need to look at specifics. We need to understand how hardware and software, communication protocols and the human connection come together to support a stable and flexible interaction that enhances production, control and efficiency in industrial environments.

Machines to machines
Every time you form a new memory, new connections are created in the brain, making the system even more complex than before. Similarly, IIoT relies on many-to-many applications or groups of nodes to accomplish a single task. The plural of “machine” is important when discussing IIoT because it highlights the complexity of the system.

For example, on a sandwich biscuit production line, the biscuit sandwiching machine at the heart of the line should be able to communicate with the previous elements of the process, as well as the ones that come after it. The mixing, cutting and baking machines at the very start of the production process should also be able to “speak” to the conveyers, the pile packing sandwich machine, the cream feed system, lane multiplication and packaging machines. This level of communication allows the production line to be more flexible and cater for a wider range of biscuit varieties.

Regardless of whether we’re talking about biscuits, automotive manufacturing or even smart grids, IIoT has communication requirements that go beyond the standard client/server needs and conventional thinking.

Instead, the nodes act as peers in a network, each making decisions and reporting to other nodes.

Besides performing core tasks, the production system is also connected to an enterprise level that can automatically issue alarms, collect and analyse data and even make predictions or recommendations based on this analysis.

A common language
IIoT will only work if it uses a compatible language across systems and industries. To help achieve this objective, industry giants AT&T, Cisco, General Electric, IBM and Intel founded the Industrial Internet Consortium in 2014. The Consortium aims to accelerate the development and adoption of interconnected machines and intelligent analytics.

As IIoT cuts across all industry sectors, from manufacturing to energy, common standards, harmonised interfaces and languages are crucial for successful implementation of the concept. The consortium hopes to lower the entry barriers to IIoT by creating a favourable ecosystem that promotes collaboration and innovation. The next step is to facilitate interoperability and open standards, allowing machines or systems from different original equipment manufacturers (OEMs) to communicate with each other and with control systems.

The old and the new
Perhaps one of the biggest challenges when it comes to implementing IIoT on a larger scale comes from integrating legacy systems with the latest generation of smart factory equipment.

Learning new things changes the structure of the brain and similarly, in manufacturing, implementing new automation equipment usually results in changes across the entire system. The solution is to use standards-based protocol gateways to integrate legacy systems in brownfield environments. This allows organisations to free data from proprietary constraints and use it for real-time and historical data collection and analysis.

There is as much risk in sticking to a single vendor based on current install base as there is to accepting these new concepts with multiple new vendors and interoperability between intelligent devices. Their concept is something that we have experienced greatly within the energy and infrastructure sector and the concepts behind IEC61850 and interoperability.

Much like the human brain, the Industrial Internet of Things is always changing and there are still a lot of questions to be answered before we fully understand its requirements, implementation and potential. Luckily, these conversations are taking place and new ideas are put into practice every day. The next step is to figure out an easy way of practically implementing IIoT innovations in manufacturing environments across the world.


Automation industry veterans are IoT pioneers and didn’t know it!

28/12/2015
Keith Blodorn, Director of Program Management at ProSoft Technology advises what to consider when starting your industrial internet of things journey

Do you consider yourself an Internet of Things Engineer? You should! Think about what the Internet of Things really means. According to Wikipedia, the Internet of Things “is the network of physical objects or ‘things’ embedded with electronics, software, sensors, and connectivity to enable objects to exchange data with the manufacturer, operator and/or other connected devices…” As an automation industry veteran, that sounds really familiar. We have been connecting intelligent devices to control networks for decades. We’re pioneers!

Acoustic coupler!

Acoustic coupler!

So, then, what’s all the fuss about? Looking through automation-oriented magazines and websites, the Internet of Things seems to be all anyone talks about. In the industrial world people call it the “Industrial Internet of Things” or “Industry 4.0” or any number of other names. But fundamentally, what is so different between this new-fangled buzzword and connecting a motor overload relay to a plant communications network like we were doing twenty years ago?

On one hand, these are basically the same idea. The Industrial Internet of Things (IIoT) is about intelligent devices like overloads, photo eyes, variable frequency drives, or PLCs providing data that we use to make our processes more efficient. IIoT is a name for a trend that has been going on in manufacturing and process control for years – remember “shop floor to top floor”? IIoT is about gathering more data from more intelligent things, and using powerful analytical tools to find and eliminate waste.

Remote Monitoring and Equipment Access
I know, we’ve been connecting to PLCs remotely for as long as most of us can remember! In the old days, remote access meant installing a serial modem connected to a dedicated phone line, so the machines we made remote access-capable were limited to the most critical operations.

What’s changed in the IIoT world is the proliferation of wireless connectivity, especially cellular networks and wireless LAN. By some estimates, 85 percent of the world’s population will be covered by high-speed cellular data networks by 2017. This has had several effects that change how we should approach remote access and equipment monitoring. First, it’s becoming feasible to gather a LOT more data from remote machines. Since 2008, the average cost per MB of cellular data has dropped 98 percent, from $0.46 per MB to just $0.01 per MB. Now, all that data that we used to deem not important enough to transmit can be made available from our remote sites.

Second, as consumer demand has driven rapid development of Internet- based user interfaces, these same technologies are making remote access to industrial equipment, and especially to process data, more accessible for more people throughout the organization.

Finally, machine builders and control engineers responsible for widely dispersed global operations can build reliable connectivity into their systems without the need for custom infrastructure and integration at the end site. Cellular technology that works on networks worldwide allows these engineers to design their system around a standard remote connection, and reasonably expect that connection to work wherever the machine ends up. For mobile equipment, access is available just about anywhere the equipment goes.

Machine and Process Control
IIoT technology is not just about cellular connections to remote machines. We are seeing new networking approaches to the old requirements of connecting sensors, operator interfaces, controllers and ERP systems that take advantage of the networking technology of today’s Internet. Major automation vendors like Rockwell Automation® and Schneider Electric® have been offering industrial Ethernet connectivity for PLCs and related devices for more than a decade. Industrial Ethernet protocols like ODVA’s EtherNet/IP provide the kind of performance required for automation systems, while also enabling interoperability with the massive Internet Protocol-based network infrastructure found in virtually every organization.

In many industrial applications, moving equipment presents a major challenge for communication to the sensors, actuators, and controls on that equipment. Many products exist to try to solve this problem, from slip rings to flexible cable trays to festoons.

However, these hard-wired solutions add cost and complexity while increasing the maintenance requirements for the machine. Meanwhile, we roam around our offices and homes with continuous connection to the Internet – no festoons in sight! Today’s automation engineers are taking advantage of the Internet Protocol-based industrial technologies to design more reliable networks for moving equipment.

Asset Mobility
One area of automation where IIoT technology is creating new opportunities involves taking the network connection anywhere in the plant. Old systems offered only so many places to “plug in.” Operators had to run the machine from one place – the operator panel. Maintenance had to jot down measurements and observations to enter into the maintenance management system when they got back to the shop. Control engineers could only program PLCs by plugging into the PLC, or to the PLC’s physical network through a proprietary adapter.

In a world where I can set my home thermostat while walking through an airport, we don’t have to live like this! Automation systems are now benefiting from the same “network everywhere” mindset as our home and office environment.

Things to Consider

Keith Blodorn - the author

Keith Blodorn – the author

The Industrial Internet of Things opens up some interesting new possibilities for automation, so you should begin planning how you can get your system “IIoT Ready.” The good news is that you likely have many pieces in place already – intelligent field devices, industrial networks, perhaps even some Internet Protocol-based infrastructure. Here is some food for thought as you consider how your system can fit into this new world of connected machines.

• Network Migration – While many of your field devices are likely already on a network, it is probably not an Internet Protocol-based network. Not to worry! As you see the need to move device data up to higher-level systems, you won’t need to scrap that tried-and-true device network. Gateway devices and in-rack protocol interfaces in your controller allow you to easily connect those older networks to the IP-based applications that need that device data. Serving up data from smart devices adds value to your operation, but it doesn’t necessarily require changing everything that is already there.

• Cybersecurity – While the interoperability of the IIoT brings great benefits, it also opens up new risks that we need to address. In reality, many automation systems are already “connected,” so cybersecurity should already be on your mind. It is important to understand what equipment can be accessed by whom, what connections are necessary and not necessary, and how data that’s transmitted outside the boundaries of your organization’s network is protected.

• Start Small – Vendors everywhere have grand visions for what the IIoT can do for manufacturers. But remember, you don’t need to dive in head first to get benefits from IIoT. Look for applications in your industry that make sense, and give them a try. One of the best parts of the IIoT concept is its scalability – Internet-based applications can just as easily serve one deployment as one million. Pick an interesting application, and run a pilot in a small area. There’s no better way to learn about a new technology than by giving it a go.

• Get Help – Most importantly, work with vendors you can trust. When it comes to industrial networking, ProSoft Technology® has been helping engineers get different equipment all talking the same language for more than 25 years. We can help you navigate your IIoT course, from connecting older Modbus® and PROFIBUS® networks to enabling remote equipment connectivity via cellular networks. When you’re ready to start the next phase of your IIoT journey, we’re here to help make it happen!


Follow

Get every new post delivered to your Inbox.

Join 482 other followers