Robust and reliable data communications support in Czech mining enterprise.

27/02/2018

In times of increasing digitisation of industrial processes, the importance of robust and reliable data communications is becoming more evident. The communication network is often critical to operations and failure to get data from A to B can have serious impact on production. Data networks supporting monitoring and control systems within mining applications require a special kind of robustness. Not only do the operating conditions include fluctuating temperatures, dust and dirt, but there is also constant vibration, which is extremely tough on network devices and cables.

The Vršany Lom brown coal surface quarry is using Westermo Lynx Switches and Wolverine Ethernet extenders to make up its entire data communications network.

The sheer size of an open-pit mine makes it difficult to maintain a data network and the need to constantly move mining equipment puts a considerable stress on the network cables.

Monitoring from the control room.

At Vršany Lom, one of the largest mines in the Czech Republic, all of these challenges have been overcome with the implementation of robust industrial networking technology from Westermo. Vršany Lom is a brown coal surface quarry located in the North Bohemian coal basin near the town of Most. The site is mined by Vršanská uhelná a.s., which is a part of the Sev.en group, a major European mining company responsible for the largest coal reserves in the Czech Republic.

Over the course of an eight-year period, Marek Hudský, chief technical engineer at Vršanská uhelná a.s., has strived to create the perfect monitoring and control system and supporting data communications network.

“The communications network is my responsibility and something I have designed, built and improved over many years,” explains Marek. “The continuous improvements have made a massive impact to overall production. The average time to transport the coal from the mine to the collection site has been reduced from 25 minutes to less than four minutes. On an annual basis this adds up to an extra month’s worth of production.

Control of the bucket wheel excavator is performed by the operator, but the communications network enables operation to be monitored from the central control room.

“This significant improvement has been achieved by reducing network downtime, which previously was very common and required many hours of maintenance. Today, interruptions to production due to network issues are rare.”

The Vršany Lom open-pit quarry covers an enormous area and mining takes place at several locations simultaneously. The coal is extracted using large bucket wheel excavators and loaded onto kilometer long conveyor belts that transport it to the collection site. Some sections of the conveyors are permanently positioned, whilst others are moved as the digging location changes.

Conveyor belts stretching out over many kilometers transport coal to a central collection point. The data communication cables are installed along the conveyors, connecting monitoring and control equipment for the excavators and conveyors to the control room.

The entire network is now running entirely on Westermo WeOS-powered devices, consisting of 60 Westermo Lynx switches and 40 Wolverine Ethernet extenders. The data communication equipment and cabling are installed along the conveyor belts. This connects several hundred sensors that provide critical operational data to the central SCADA system, which helps to ensure safe and effective mining. Fibre optic cables are located inside the permanent conveyors, with the Lynx switches installed in substations at set points along the conveyor belts. The fibre network is configured in a ring topology with Westermo’s FRNT super-fast ring reconfiguration protocol providing network reconfiguration times of less than 20 ms.

“The fibre network works flawlessly. The switches and cables have been in operation for quite a while now and have required very little maintenance,” explains Marek. “The real challenge is the data communication closer to the actual mining. This is where operating conditions are really tough due to continuous vibration and electromagnetic interference from the machines. Also, because the equipment needs to be constantly moved this exposes the cabling to constant wear and tear.

“We have been familiar with Westermo technology since the days of short haul modems. We knew they produced high quality products and when first introduced to the Wolverine Ethernet Extender we were immediately interested. At that point we were using a custom-made communication device, which was not really suitable for a tough mining environment. It caused regular network downtime, maintenance and production standstills, which was a completely unsustainable situation.”

“The first thing that appealed to me about the Wolverine was that was able to provide reliable data communication over regular twisted pair copper cables,” said Marek. “We use copper cables because they can withstand a lot more abuse than fibre before failing, however, when the digging location changes cabling is often bent, cut and sliced, which can reduce the quality of signal. . Despite this we are still able to achieve reliable data communication thanks to the Wolverine device which enables reliable communication even if the copper cabling is not in pristine condition. Secondly, the device had the robust characteristics that are needed to operate reliably in this type of environment. Finally, the Wolverine offered a lot of functionality, such as super-fast ring reconfiguration, LLDP and SNMP that enabled both a very technically advanced and very robust network solution.

“It has been quite a long process of continued improvement to get to where we are right now with the network in terms of functionality and reliability. Last year, I replaced the remaining legacy devices. We are now running the network entirely using Westermo WeOS-powered products and I am very pleased with the overall performance.

“We have always looked for that next improvement that will further strengthen the resilience of the monitoring and control system. By selecting Westermo products and utilising the WeOS operating system to its full capacity, Vršanská uhelná will now see many years of robust and trouble-free data communications.”

@Westermo #PAuto
Advertisements

Enabling simple electronic marshalling of pneumatic systems.

01/02/2018

The ASCO Numatics 580 CHARMs node enables simple Electronic Marshalling of pneumatic systems

Pneumatic systems are an essential part of many process plants, in industries such as chemical, life science and food & beverage, particularly those where ancillary machines are used. Although an essential part of the process, these machines are often stand-alone and are not connected back to the process control architecture. This could mean that should there be a problem with the machine’s pneumatic systems, it may not be communicated back to the control system, therefore leading to a breakdown of the machine. The plant may then continue to produce products that cannot go on for further processing or packaging.

Current architecture
Process control systems are normally able to accommodate pneumatics systems through the implementation of an additional fieldbus network, such as PROFIBUS-DP® or Modbus® TCP. However, this approach adds complexity through additional configuration and data mapping, and whilst supplementary diagnostics is possible, a second programming environment, with its associated costs, is not desirable and may not easily support communication and power redundancy.

In 2016 Emerson introduced electronic marshalling for pneumatic systems. This solution enables users to easily integrate the ASCO Numatics 580 Series valve islands, with Emerson’s DeltaV control system for a complete Emerson Automation I/O and pneumatics system solution for process plants.

What is Electronic Marshalling?
Control engineers and project managers working on continuous or batch-oriented processing plants will be familiar with the problems associated with commissioning I/O in distributed control systems. The traditional method involves field device connection through multi-cored cabling, wired to terminal blocks in control cabinets, with each connection then manually cross-marshalled to its appropriate I/O card. As system complexity increases and the number of connections accumulates – inevitable I/O changes abound – thus, difficulties arise in keeping track of each and every physical connection in the marshalling panel. Every change adds cost, delays, and most importantly risk to the project. Adding redundancy causes even more headaches. Furthermore, future maintenance and system modification is often made difficult with staff changes and system unfamiliarity, which can adversely affect down-time.

Whilst manual marshalling is still considered adequate for small projects, large-scale batch and continuous processes in areas such as chemical, pharma, and food manufacture – where lost production can result in truly excessive costs – increasingly turns to more risk averse and reliable process system design strategies.

Electronic Marshalling does away with the manual and labour-intensive practise of cross marshalling. The cables from the field are still wired in to the marshalling cabinet, but from there on in the connections to the controllers are handled electronically. It is now possible to map each I/O channel to any controller. Emerson manage this mapping with their CHARMs (CHARacterisation Modules). These are essentially analogue to digital conversion cards that may be characterised to perform any signal function (AI, AO, DI, DO, RTD etc.). They are ‘clicked’ on to CHARM I/O Cards (CIOC), which are in-turn mounted on DIN rail terminal blocks where field wiring is arranged; the field device is identified and the appropriate CHARM card is set up and Electronically Marshalled through a hidden digital bus to ANY controller in the system. Fully redundant power and communications connection is included, and autosensing each I/O channel means that identification, configuration, diagnostics and design changes are easily carried out by the DCS.

The technology provides many benefits, from the first design stages, to commissioning, and through the lifetime of processing oriented manufacture. As digital or analogue I/O of any type can be bound to specific controllers at any stage in the project without manual rewiring, hardware and design costs can be more predictable from the outset. Design changes – adding new I/O or changing I/O types – can be catered for without intensive labour and disruptive re-wiring costs. Projects become easier to scale, safety is assured. Configuration and diagnostics are taken care of by a single integrated software platform – Emerson’s DeltaV Explorer. Importantly the Total Cost of Ownership is significantly reduced, measured by increased operational certainty, process reliability and increased machine availability.

Integrating pneumatic valve islands into automation systems with CHARM technology.
The 580 Series CHARMs allows control engineers and project managers working on continuous and batch-oriented manufacturing projects a straightforward, cost saving and fast-track approach to the integration of pneumatic systems within the process control environment. The node facilitates single connection from the field to Emerson’s DeltaV™ DCS offering Electronic Marshalling, native configuration and diagnostics plus built-in redundancy – for a truly integrated system architecture.

•Download Whitepaper – 580 Charm

With the introduction of ASCO Numatics’ 580 CHARMs node, pneumatic systems’ integration with Electronic Marshalling is made possible within a single network platform – a one package and one supplier solution – for the first time. The 580 CHARMs node directly links to the DeltaV system via the CHARM baseplate and natively combines autosensing and Electronic Marshalling through redundant power and communication connection, harnessing the full native diagnostic capabilities of the DeltaV. From the DCS, each pilot valve is managed in exactly the same way as the other system I/O. The DCS can identify and marshal all the pneumatic connections through a single redundant connection with up to 48 valve solenoid outputs connected to each CHARM node.

The 580 CHARMs node interfaces with ASCO Numatics 500 Series valve islands. These high performance, “plug-in” directional control valves feature the highest flow capability for their product size, helping to keep machine footprints compact and lowering system costs, whilst a comprehensive range of accessories and options makes for easy installation, configuration and modification.

The cost and time benefits of simplified machine architecture
When compared to a manually, cross-marshalled, process manufacturing system for batch and continuous production scenarios, the benefits of a CHARMs technology based solution with Electronic Marshalling are apparent and compelling. When pneumatics require integration, and the solution is compared with the introduction of a fieldbus such as PROFIBUS-DP®, the benefits are even more convincing with the easy-to-use, task-based engineering environment that the DeltaV offers.

The elimination of a secondary network allows substantial savings in components, associated I/O, wiring, and commissioning time. The Emerson single network solution means single point responsibility for products, documentation and support, with savings for personnel, programming resources and system training. Reduced component count and direct connection equals a reduced risk of system failure. Design changes throughout project development and future troubleshooting is made easier with embedded intelligent control with autosensing and plain message workstation diagnostics. Shutdown time is significantly reduced thanks to integral diagnostics directly on the valve island or displayed on the DeltaV systems workstation. Reliable redundant connection ensures safety and reduces maintenance down time. Further compelling benefits include flexibility in process control thanks to every CHARM I/O from voltage and current sensors to alarms and pilot valves sharing the same DeltaV Explorer configuration, and being available in the ‘cloud’ to any controller in the network.

These factors combine for a tightly integrated solution for I/O and pneumatic valve islands that delivers more complete project and operational certainty, comprehensive control optimisation and processing reliability.

@ASCO_EU #PAuto

Society goes to the polls.

07/09/2016

Irish candidate goes forward for most senior role in Automation Society

The polls were opened recently for the election of leadership positions for 2017 in the International Society of Automation (ISA). The ballot is for election of new leaders by direct vote of eligible ISA members.

This year for the first time a candidate from the Ireland Section has been nominated for the position of President-elect Secretary. This position is a commitment for three years, the first year as Secretary of the Society, the second year as World-wide President and the third as Past President.

Those nominated for this (and indeed all officer positions in the Societed) are subjected to a rigorous pre-nomination process before their name is placed on the ballot paper. Nomination for an elected Society leadership position is an honour accorded to only a small percentage of the ISA membership.

Brian_J_CurtisBrian J. Curtis (G E Healthcare) Cobh, County Cork, Ireland (right), is one of the candidates this year. He has an impressive leadership background both in the automation industry and in other sectors industrial, commercial and recreational. He has 35 years Pharmaceutical Control Systems experience.

Speaking recently he told us that he has been a member of the ISA for over twenty years and has served in most offices in the very active local section. “I joined my local section to access ISA technical meetings, technical papers, standards and networking opportunities.” However he was also willing to participate more actively in the running of the Section and later in the greater Society, in Europe and Globally.

Brian served in many portfolios within the Ireland Section down through the years including a term as section president (1999-2000). He became Vice President District 12 of the Society (Europe, Africa & Middle East) in 2013.  He also served on the ISA Executive Board 2013 to date, and also on the important ISA Finance Committee. The various society offices involved visiting sections in Europe and the Middle East as well as attendance at various Society governance and  leadership meetings.  His service through the years has been recognised by the Society, as a recipient of the Distinguished Society Services Award, as well as recognition at Section and District levels. He says “My current challenge is working with ISA on our five strategic goals!”

electVoting in the Leadership Elections is relatively easy. Go to the ISA Home Page and look for the button “Vote Now” and follow the instructions.
Only eligible members may vote. You’ll need your ISA ID information of course.
The Ballot lists the candidates with a link to their Biographical details. The voting is simply a matter of ticking the candidate of your choice.

He shared his vision for the Society: “That ISA Sections and Divisions all work together so that membership and industry feel the benefits, both locally and globally, ensuring “ONE ISA” will prosper into the future.”

“I believe we must nurture the volunteer in the society and encourage sections, divisions and standards to work together across geographic and technical boundaries so as to harness and build upon the strength and integrity of ISA in meeting the automation challenges of the future.”

He is particularly in supporting the ISA’s pioneering work in the emerging area of cybersecurity. Industry and production methods are evolving at a fast pace and it is important to identify emerging trends and seize these as opportunities for our member’s and for automation.

He wants to strengthen the Society by encouraging co-operation and communications between sections, divisions, standards and all areas of ISA around the world. He is not afraid to support the tough strategic decisions that will allow ISA to continue to be the leader in the automation industry. It is important also to promote the lifelong opportunities that automation presents as a career for school and college graduates.

There are two other candidates for this position. They are Eric C. Cosman (OIT Concepts, LLC) Midland, Michigan, USA. He was one of the speakers at the groundbreaking Food and Pharmaceutical Symposium in Cork earlier this year. The other candidate is Glynn M. Mitchell (US Nitrogen) Greeneville, Tennessee, USA.

Although most of the Presidents of ISA since its foundation have hailed from the US there have been a handful of Presidents from other regions of the World.

#ISAuto #PAuto

Reduce data centre asset liabilities.

07/08/2016
How you implement RFID monitoring is critical to the performance of the system.

Harting_Data_Centre_AppWith regular headlines about the latest cybercrime attack stealing important or commercially sensitive data, the physical security of IT equipment is often overlooked. One area in particular is the almost casual theft of small pieces of equipment from the racks. For example, the latest helium filled 10TB hard drive represent a €700  (£600stg) investment and with up to 22 drives used in a 4U storage array, loss through theft can be substantial.

The constant monitoring of what equipment is located inside the data centre has additional benefits not only in terms of security but also in managing cooling air-flow requirements and power consumption, which support growing need to demonstrate compliance with Green IT initiatives.

In response, data centres have been increasingly looking for cost efficient solutions for key asset management. Data Centre Infrastructure Management (DCIM)* is an emerging holistic management approach that combines traditional data centre equipment and facilities with monitoring software for centralized control. DCIM includes physical and asset level components and by combining both information technology and facilities management it raises the effectiveness of a data centre.

RFID has been seen by many as a key element to providing real-time monitoring of component location within the data centre. By installing passive RFID tags on every removable component of the rack data centre systems integrators and site operations managers can easily use them not only to record locations but more information about the device than they could before with standard asset tags.

But how you implement RFID monitoring is critical to the performance of the system.

Portable hand-held RFID reader systems have a very small UHF read range and only offer a slightly better performance than relying on paper records or barcodes because it requires employees to walk down aisles and identify the piece of equipment and its location. This is a very time-consuming task and as such is not undertaken very often. It also relies on the competence and integrity of the operator carrying out the check.

Fig1_HartingRFID

Fig 1

Up until now it has been unrealistic from a physical location point of view to directly integrate even the most compact passive RFID UHF patch antennas into existing data centre server rack arrays.

Typically, 4 antennas would have to be separately mounted either side of the front of each server rack, in both the upper and lower areas and carefully positioned to ensure there are no gaps in the RF field coverage. Correspondingly, with such an arrangement it would also be necessary to utilise multiple readers, resulting in excessive installed cost

Harting now have the ideal solution to remove this higher cost multiple patch antenna and reader arrangement with its innovative Ha-VIS RFID LOCFIELD® coaxial cable waveguide antenna.

They can be directly integrated, with insulating spacers, onto the rear side of the front access door of each server rack. Only one of these Ha-VIS RFID LOCFIELD® antennas needs to be fitted for a fully installed 45U sever rack. By fitting in an extended S-shape design (See Fig. 1) you can achieve the best possible RF field coverage of the complete rack. In conjunction with a single reader which has the required power to match the correct read distances, it can register passive RFID tags that provide specific item identification within a rack and additional sensor functionalities e.g. detecting empty or occupied slots, thus minimizing the complete data centre system installation cost.

The Ha-VIS RFID LOCFIELD® is a traveling wave RFID antenna consisting of a coax cable that—when plugged into the antenna port of a Harting UHF EPC Class1 Gen 2 reader—conveys the reader’s RF signal along the cable’s copper core and to the antenna’s far end, where a coupling element draws the RF wave out and onto the cable’s exterior. When that signal reaches the reader, a metal protecting shield prevents the interrogator from receiving its own signal and interfering with its performance. N.B. The Ha-VIS LOCFIELD ® antenna should not be mounted directly onto a metal surface but raised-off slightly with insulating spacers.

Fig2_HartingRFID

Fig 2 – Harting HA-VIS RFID LOCFIELD® antenna

By its functional nature the Ha-VIS RFID LOCFIELD® antenna facilitates real-time monitoring of movements in and out to the rack enclosure and is available in different lengths up to 10 metres and is 5 millimeters in diameter. If used with a high-powered reader, such as Harting’s Ha-VIS RF-R500 long range reader transmitting a signal of 4 watts (36dBm), it can read passive EPC Class 1 slot Gen 2 transponders located up to 2.5 metres away radially over its entire length.

Put simply Harting’s Ha-VIS RFID LOCFIELD® antennas allow you to identify what is in a data centre rack, its population status and where a specific item is located.

* DCIM was originally defined in the US and describes a methodology of IT and facilities management.
@Harting #PAuto

Manufacturing improvements with PLM.

04/05/2016
Adam Bannaghan, technical director of Design Rule, discusses three ways that the digital continuity of PLM helps manufacturers deliver high quality innovative products with ease.
Adam_Bannaghan

Adam Bannaghan

No one hates being faced with a problem they weren’t expecting more than manufacturers. During the design and build process, unplanned events can increase cycle times and have a detrimental impact on the management of materials and working hours. There is now a demand in the manufacturing sector for a system that provides real-time visual status and control, alongside product quality predictions. Enter, product lifecycle management (PLM).

 

PLM is used by different sectors for various reasons. For manufacturers, the virtual production element is used to improve the planning, management and optimisation of industrial operations. The software also allows users in multiple locations to work on projects simultaneously, tracking progress and inputting operational data. Manufacturers may not have as much paperwork to track or intellectual property to protect as other sectors, but there are three important reasons why manufacturers should invest in PLM software.

Immediate insight
When used as part of a PLM system, virtual production software can visualise the build of a product before the assembly line is in place. This means engineering and manufacturing directors can identify possible constraints and fix errors before the product reaches the manufacturing stage. Engineers can then evaluate ‘what-if’ scenarios months before making the commitment to production. Having a 3D visualisation of how the product interacts in the real world means designers can make changes, optimise operations and facilitate higher quality innovation.

For instance, misjudged timings are a major cause of product delay and error. Having this software in place ensures all parties developing or manufacturing a product are in sync. This synchronisation is referred to as digital continuity, where all parties have access to the same design at every stage of the design and build process. This optimises the manufacturing process, bringing lead times forward and helps those involved spot errors before they have a serious impact.

Smoother collaboration
Interconnectivity and the industrial internet have increased the complexity of PLM requirements, especially in operations planning, management and optimisation.

Many manufacturers now run their design and build operations across multiple locations. Distance, cultural differences and diverse approaches to problem-solving can sometimes result in costly production errors if seamless communication is not possible. By using software that bridges the gap between different locations, businesses can plan, manage and optimise industrial processes.

For example, a common problem when part measurements and specifications being are sent overseas for production is that poor translations or measurement system differences can sometimes cause costly production errors. Engineering teams can easily fix these errors in the manufacturing process, but they still cause delay, confusion and ultimately cost money. By using 3D virtual production software, users can communicate instructions and measurements clearly as well as alter specifications during the design stage.

Optimised manufacturing
The more complex a product is, the more critical the assembly process becomes. Software that allows companies to properly plan, simulate and implement production lines can benefit all departments, from design to engineering, sales and marketing. By implementing a digital continuity platform, all parties can start planning well in advance, bringing lead times forward and reducing the risk of missing deadlines.

Whether a company is experiencing geographical expansion, requests for more complex products or has a history of misjudged timings, implementing virtual production software, such as Dassault Systèmes’ DELMIA, could prevent you from getting a nasty surprise during your next project.

@DesignRulePLM #PAuto

Changing industry standards for OEMs Enginers & contractors: one year on!

04/10/2015

In 1998, Google was founded, the first Apple iMac was introduced and the legendary Windows ’98 was released by Microsoft. In a less glamorous but equally important corner of industry, a new commission was being formed to revise the complex IEC 60439 industry standard, which governed the safety and performance of electrical switchgear assemblies. Although Windows ‘98 has long been consigned to history, the new industry standard – BS EN 61439 – only became mandatory on November 1, 2014.

One year on, Pat McLaughlin, Boulting Technology’s Operations Director, evaluates how original equipment manufacturers, panel builders, electrical engineers, consulting engineers and contractors have been affected by the new BS EN 61439 standard.

Boulting_BS_EN_61439

Why a new standard?
In a market where the demand to optimise and reduce costs blends heavily with higher needs for assembly flexibility, the introduction of a new set of standards was needed to guarantee the performance of Low Voltage Switchgear Assemblies.

Switchgear and Control Gear assemblies are multifaceted and have an endless number of component combinations. Before the introduction of the new standard, testing every conceivable variant was not only time consuming and costly, but impractical.

The intricate character of assemblies also meant that many did not fit into the previous two testing categories: Type Tested Assembly (TTA) and Partially Tested Assembly (PTTA). For example, panels which were too small to be covered by TTA and PTTA fell outside the standard. Finally, in the case of a PTTA, ensuring the safety and suitability of a design was often dependent strictly on the expertise and integrity of the manufacturer.

Design verification
The major change introduced by the new BS EN 61439 standard refers to testing. It states that the capabilities of each assembly will be verified in two stages: design verification and routine verification. This means the new standard completely discards the type-tested (TTA) and partially type-tested assemblies (PTTA) categories in favour of design verification.

Although BS EN 61439 still regards type testing as the preferred option for verifying designs, it also introduces a series of alternative routes to design verification.

The options include using an already verified design for reference, calculation and interpolation. The BS EN 61439 standard specifies that specific margins must be added to the design, when using anything other than type testing.

One of the main benefits of the new design verification procedure is its flexibility. Under the old BS EN 60439 specification customers would demand a Type Test certificate for each assembly particularly Incoming Air Circuit Breakers, which was very expensive and time consuming.

The new standard allows users and specifiers to pertinently define the requirements of each application. Annex D of the BS EN 61439 standard provides a list of 13 categories or verifications required, what testing method can be used and what comparisons can be made. In order to optimise testing time, the standard allows derivation of the rating of similar variants without testing, assuming the ratings of critical variants have been established by test.

Dividing responsibility
The second major change implemented by the new industry standard refers to the responsibilities of each party involved in the design, test and implementation of low voltage switchboard assemblies. Unlike BS EN 60439, which stated the OEM or the system manufacturer was solely responsible throughout the testing programme, the new standard divides the responsibilities between the OEM and the assembly manufacturer, or panel builder.

The new standard recognises that several parties may be involved between concept and delivery of a switchboard assembly. The OEM is responsible for the basic design verification. In addition, the assembly manufacturer is meant to oversee the completion of the assembly and routine testing.

For innovators like Boulting Technology, the new BS EN 61439 has brought more freedom and flexibility when designing switchboard assemblies. For example, Boulting Technology has designed and launched the Boulting Power Centre, a range of low voltage switchboards, which are available in 25kA, 50kA, 80kA and 100kA, fault ratings, and up to 6300Amp current ratings.

Although change is never much fun, it’s what technology and industry are all about. If this wasn’t the case, we would all still be using Windows 98 or the indestructible Nokia 5110.


ABB Process instrumentation, analytical technology and gas detection in Ireland

19/01/2015

Hanley Measurement & Control has built a reputation for the supply of specialist solutions and expertise in process instrumentation, process analytical technology and gas detection. Founded in 1981 it has long been considered as a leading automation in Ireland. The company has recently been appointed as channel partner in Ireland by ABB, to expand its instrument and analyser offering into the Irish process market

Left to Right: Chris Kennedy, Gavin O’Driscoll & Eoin O’Neill of Hanley Measurement & Control together with Aidan Edwards of ABB stand next to a representation of a 3 meter magnetic flowmeter (the largest every supplied!) during a recent visit to the ABB flow meter manufacturing facility in Stonehouse, GB.

Left to Right: Chris Kennedy, Gavin O’Driscoll & Eoin O’Neill of Hanley Measurement & Control together with Aidan Edwards of ABB stand next to a representation of a 2.4 meter magnetic flowmeter (the largest every supplied!) during a recent visit to the ABB flow meter manufacturing facility in Stonehouse, GB.

The partnership will see the company acting as the official sales agent for ABB’s complete portfolio of instrumentation and analyser products for applications in the pharmaceutical, chemical, food and beverage and other related industries.

Chris Kennedy, Managing Director of Hanley Measurement & Control commented that “partnering with ABB enables the company to provide its customers with an enhance product range specifically in relation to flow measurement and analytical solutions.”

Commenting on the partnership, Tim Door, General Manager for ABB’s Measurement and Analytics business in the Britain and Ireland says: “The partnership with Hanley Measurement and Control marks a positive move forward that underlines our intent to grow our presence in the Irish process market. The company is a great fit for our growing range of measurement and control products for improving process performance and efficiency.”

“Utilising a well-known and respected partner such as Hanley Measurement & Control will allow our customers in Ireland to get full access to support and service going forward into 2015 and beyond.”

• Following the completion of a management buyout Hanley Measurement & Control is no longer part of the Hanley group of companies. Hanley Measurement & Control is now a subsidiary of Eolas Scientific which also has an operating company in the UK called Eolas Technology. The management team of Chris Kennedy, Gavin O’Driscoll and Eoin O’Neill are committed to ensuring our customers receive exceptional service and a world class range of products.