Sensors in space – will they last 100,000 years?

22/02/2015

ROSETTA+LANDERWhen the European Space Agency’s (ESA) Rosetta space probe arrived at Comet 67P/Churyumov-Gerasimenko it had been travelling for ten years and had travelled 4 billion miles on just one tank of fuel. If the fuel had run out before the probe reached the comet, the navigational thrusters would not have been able to make the numerous course corrections needed to rendezvous with the comet and then establish a stable orbit from which to launch the Philae landing module.

Throughout the long journey, Kistler pressure sensors monitored the fuel consumption continuously for the whole ten years to ensure that Rosetta arrived at its destination with enough fuel to make the final corrections to put the probe into orbit.

The Rosetta mission was one of the most ambitious projects executed by the ESA and two Kistler piezoresistive sensors played a small but valuable part in the success of the project by providing precision fuel monitoring from March 2004 onwards.

Sensor in space!

Sensor in space!

The key selection criteria for these sensors included their proven longevity and total reliability despite high levels of vibration at lift-off and years of zero gravity conditions. Rosetta’s cargo includes what is known as the Rosetta Disk – a nickel alloy disk with information etched onto it in image form. The disk contains about 13,000 pages of text in 1200 different languages, and it should still be readable after 10,000 years: durable though they are, even Kistler’s sensors are unlikely to be functioning after such a lengthy period!


Accelerating development of smart, power-efficient IoT applications!

28/07/2014
Delivering intelligent connectivity starting at the network edge

B&B Electronics has introduced its Wzzard™ Intelligent Sensing Platform.    Wzzard is an easy to use, complete wireless sensor connectivity platform for the rapid deployment of scalable, intelligent, reliable Internet of Things (IoT) networking in remote and demanding environments.   Wzzard was designed to help integrators, VARs and service providers efficiently develop and deploy secure, smart, self-powered, and scalable IoT applications.

BBWzzardUnlike a traditional SCADA application where sensors and edge devices are simply passive conduits for raw data, edge decision making delivers a more effective network.  Using iterative control limits and gateway data aggregation to support applications closer to the network edge, the Wzzard Intelligent Sensing Platform brings this intelligence to the network starting at the sensor, creating a more responsive, reliable and efficient network.

There are several key components and technologies that comprise B&B Electronics’ Wzzard Intelligent Sensing Platform, as demonstrated here: B&B Smart Sensing Wzzard Platform

First, Wzzard Intelligent Edge Nodes will connect, via conduit fitting cable gland or M12 connector, to any industry-standard sensor. General-purpose analog inputs, digital input/output and thermocouple interfaces are included. B&B has already integrated internal temperature and accelerometer sensor options, and can integrate other application specific sensors upon request.

The Intelligent Edge Nodes are easily configurable, using Android or IoS smartphones or tablets and the Wzzard app over Bluetooth LE 4.0. They can be configured to communicate only data outside specified thresholds, reducing the cost on cellular networks, as well as to associate other useful information (geo-location, device name, and up-time) with the collected sensor data for upstream analytics applications.   Control time synchronization is used to maximize battery life, exceeding 5 years for many applications.   Nodes are IP67 rated for outdoor use and include both magnetized and screw mount options.

Next is the communications component. B&B chose SmartMesh IP® wireless sensing technology from Linear Technologies Dust Networks.  SmartMesh IP is based upon the wireless IEEE 802.15.4e standard and creates full-mesh networks, sometimes referred to as “mesh-to-the-edge” networks.  SmartMesh IP networks use a triple-play of wireless mesh technologies—time diversity, frequency diversity, and physical diversity—to assure reliability, resiliency, scalability, power source flexibility, and ease-of-use.  At the core the technology is an intelligent mesh network with advanced algorithms and power saving technologies that enable powerful features not available from other WSN providers including:

• Ultra low power consumption

• Deterministic power management and optimization

• Auto-forming mesh technology for a self-healing and self-sustaining network

• Dynamic bandwidth support, load balancing and optimization

• Network management and configuration

• Zero collision low power packet exchange

• Scalability to large, dense, deep networks

wzzard_groupWzzard’s Intelligent Edge Nodes can join the mesh network at any time without gateway interaction.  Nodes attach automatically, and the SmartMesh IP technology dynamically self-configures to re-form the mesh network. To ensure data always reaches the gateway, nodes will determine their optimal RF paths to other nodes and back to the gateway. The SmartMesh IP protocol implemented within the edge nodes includes advanced network management functions and security features such as encryption and authentication. For more information: B&B Smart-Sensing What is Smartmesh

Wzzard also uses the lightweight, publish/subscribe messaging transport MQTT protocol for sensor communications.   MQTT is an extremely simple messaging protocol created for M2M and IoT applications over wireless networks. Its efficient distribution of information to single or multiple receivers, low power usage and minimized data packets make it ideal for mobile or remote locations. Unlike older SCADA protocols such as Modbus, MQTT places few restrictions on the volume or type of data that can be communicated. This facilitates a meta-data approach where multiple IoT applications can act upon the information simultaneously without having to know its origin.

Finally, B&B’s programmable, industrial-grade Spectre router serves as Wzzard’s Intelligent Gateway. Spectre can connect equipment and other devices to the Internet or Intranet over either wired Ethernet or wireless cellular connections. Spectre is built for plug-and-play simplicity with extensive remote management, deployment and customization options.  It is a robust, flexible gateway designed for easy deployment in demanding environments and the cellular version creates secure connections in locations where cable connections are impractical.

Processed information from the sensor nodes is published through the Spectre Gateway up to the customer’s IoT application using MQTT transport protocol.

SeeControl is one of the first IoT platform providers to leverage the Wzzard Intelligent Sensing Platform and MQTT protocols to develop applications. (More information at: B&B/SeeControl Partnership)

“Today, most business analytics can only describe what has happened and why,” said Parthesh Shastri, SeeControl’s vice president of customer success and strategy.  “The industry can move past descriptive to predictive and even prescriptive analytics using IoT technologies such as B&B’s Wzzard that applies edge decision making and processes information collected from sensors before transmitting relevant, as opposed to raw data, up to SeeControl’s SaaS remote management platform. Cloud-based big data analytics is then better able to derive meaning from the data, and prescribe specific courses of action, to drive more intelligent applications.”

Jerry O’Gorman, CEO of B&B Electronics explained, “The Wzzard platform’s technologies, protocols and hardware work together to reduce the complexity, expertise and time it takes for integrators to develop scalable IoT solutions.   We developed Wzzard to facilitate the coming world of connected intelligence, where smart machines and systems will collaborate, inform and make decisions on the intelligence gained from each other with little or no human supervision. Humans will program these smart networks, but then they have the ability to run efficiently and autonomously, sometimes for years, until there’s data reported that requires human intervention.”

Possible Applications:

  • Flood and water level monitoring
  • Smart car parks; vehicle counting, air quality
  • Smart irrigation systems monitoring soil moisture, environmental conditions, leaks
  • Mechanical condition monitoring/preventative maintenance
  • Energy measurements and audits on a per system or machine basis
  • Data center environmental monitoring
  • Tank and lift stations
  • Condition monitoring and optimization in industrial environments
  • Traffic monitoring of over-height vehicles for tunnels and bridges

Keeping all Welsh air good!

25/06/2014
Air quality monitors track pollution hot-spots

Situated in the south west of Wales, in a largely rural area bordering the Brecon Beacons, Carmarthenshire’s air quality is predominantly good. However, there are areas of concern where major roads pass through some of the County’s larger towns, including Llanelli, Carmarthen and Llandeilo, where air quality is dominated by the effects of road traffic. The County Council is therefore testing new monitoring technologies so that it will be better able to track the effects of improvement measures.

The sensor!

The sensor!

Carmarthenshire County Council operates a network of passive diffusion tubes as part of its commitment to Local Air Quality Management under Part IV of the Environment Act 1995. However, in 2013, Air Monitors supplied the Council with a new type of air quality monitor, ‘AQMesh’, that is able to provide continuous air quality readings for a range of important parameters. This new technology is small, wireless, lightweight and battery powered, which means that it can be quickly and simply mounted in almost any location.

The Council’s monitoring programme has identified Nitrogen Dioxide (NO2) from traffic emissions, mostly diesel vehicles, as the pollutant of greatest concern. A number of locations in the centre of Llandeilo have been shown to be in breach of European air quality standards, so an Air Quality Management Area (AQMA) has been established in the town. Whilst NO2 levels are not sufficiently high to cause immediate health effects, the current levels could cause adverse health effects over the long term, particularly in people suffering from respiratory conditions such as asthma and chronic obstructive pulmonary disease.

NO2 reduction by about 25µg/m3 is the main objective of the air quality action plan, but the Council is determined to ensure that all pollutants remain at safe levels, so the ability of the AQMesh to monitor a wide range of parameters (Ozone, Carbon Monoxide, Sulphur Dioxide, Nitrogen Monoxide, Nitrogen Dioxide, Temperature, Humidity and Atmospheric Pressure) is a major benefit.

Four features
Stephen Hoskin from Air Monitors says: “There are a number of important new features in AQMesh that are fundamentally changing the way that air quality is monitored; firstly, it can be located where air quality matters most – where people are breathing.

“Secondly, in comparison with large reference stations, with only a small drop in levels of accuracy, the cost of monitoring is reduced dramatically, which means that users will be able to measure air quality in more locations, and this will reduce the UK’s current dependence on modelling to ‘guesstimate’ air quality.

The unobtrusive sensor in situ!

The unobtrusive sensor in situ!

“Finally, by providing near real-time data over the internet, useful air quality data can be made available to a much wider audience via smartphones, tablets and computers.”

The AQMesh in Carmarthenshire is being operated by Oliver Matthews, one of the Council’s Environmental Health Practitioners with specific responsibility for air quality. He says: “In the past we have not continuously monitored this range of parameters because doing so would have involved the installation of a large, expensive air quality monitoring station that would have probably required planning permission.

“These reference stations offer high levels of accuracy, but come with large capital and operational costs, and cannot typically be moved, whereas the AQMesh can be quickly attached to a lamp post or other item of street furniture at a fraction of the cost.

“Alternatively, we could install passive diffusion tubes, one for each parameter of interest, but the disadvantage of this method is that the tubes are left in place for four to five weeks, so we are only provided with an average figure over that time, with no indication of the peaks and troughs that occur. For example, a recent road closure resulted in the diversion of traffic and, with the benefit of AQMesh, we were able to track a significant short-term rise in NO2.”

With the assistance of key stakeholders, the AQMA draft action plan has identified a number of options to improve air quality, and the AQMesh unit has been installed in order to help assess the success or failure of each initiative.

Interestingly, the development of the AQMA action plan benefitted from essential gas main works that were required in Llandeilo because this involved the closure of the main trunk road (Rhosmaen Street) for a period of up to three months, which provided an opportunity to identify the effects of traffic diversions on air quality.

Options that are being considered as part of the action plan include improving traffic management and seek to prevent vehicular ‘stop/start’ and promote a smooth flow of traffic. Typically, these options could include the provision of extra parking outside of the AQMA, the removal of some on-road parking within the AQMA, better parking enforcement, relocation of bus stops, reviewing pedestrian crossings and improvement of bottle necks.

Summarising Oliver says: “The network of diffusion tubes has enabled us to identify hotspots, and these are the locations at which the AQMesh will be of greatest use because we will be able to study trends and look for the causes of elevated pollution levels at specific times of the day.

“Data from the AQMesh are provided on a website via the ‘Cloud’ so, looking forward, this technology has the potential to make a major difference to air quality improvements and to the transparency and availability of data. For example, it may become possible to integrate air quality monitoring with automatic traffic management.”


#EMrex Revving up in Stuttgart!

07/04/2014
The Emerson  Global Users Exchange in Europe was a three-day event for existing and potential users of Emerson Process Management products and services. The event was held from 1-3rd April 2014 in Stuttgart, the capital of the German Land (State) of Baden-Wurtemburg (D).

FSTStuttgartMany memories sprang to mind as the Aer Lingus flight from Dublin touched down gently at Stuttgart Airport. It was over forty years since I had been there on a training course – in pneumatic instrumentation – in a local company which has long since been swallowed up , much like pneumatic controls,  in the advances and takeovers since that time! There on the surrounding hills was the emblematic fernsehturm, the very first television tower in the world and a symbol of a resurgent city recovering from the ravages of total war.

I was travelling to the Emerson Exchange User Group meeting (Tagged #EMrex on twitter) of the European, Middle East & African region along with over 1,200 others anxious to learn of the experience of others as well as learning of any new “goodies” Emerson themselves might have to unveil! This was the second such event in Europe, the last was also in Germany in the city of Duesseldorf, two years ago – see Automation returns to Duesseldorf. Of course the User Conference for the Americas has been held annually for a number of years (see our Reports here!)

The event started with a plenary session where everybody gathered in the main hall to hear the schedule for the three days, a business update on Emerson and a technology update.

Francisco Diaz-Andreu opens the Emerson Global Users Exchange, Stuttgart, April 2014

Francisco Diaz-Andreu opens the Emerson Global Users Exchange, Stuttgart, April 2014

Delegates were welcomed by Francisco Diaz-Andriu, of Repsol, Spain and member of the Board of The Emerson Users Group. He has been active in automation in Spain for many years and was the founding president of the vibrant International Society of Automation (ISA) Spain Section, in which he is still active. He gave a preview of what attendees could expect during the three days. He outlined the work of the user group in the organising of the conference and the composition of the board. Needless to say they are always looking for new members to broaden the application expertese available to future events.

The Porsche factor!

Roel van Doren

Roel van Doren

Emerson’s European President, Roel van Doren, started with the first presentation talking about the company’s philosophy.  A great company is a company that asks the right questions. Instead of, “What can we sell you?” or “What do you want to buy from us?” a great company asks its customers questions like, “What is your vision for the way your plant should operate?” or “How can we work together to solve your problems?”

This kind of collaborative approach to the customer relationship is the essential idea behind the strategic direction Emerson is taking. Taking his cue (excuse the mixed metaphor!) from one of the companies for which Stuttgart is famed far and wide, Porsche, he drew a comparison, “Like the pilot of a high performance race car you face many challenges that come in your direction at an ever increasing speed. And like a pilot, you must be able to react quickly to those challenges. You need to be able to fully trust the team that’s behind you. Our hope is that you will trust us to be the business partner that you can rely on, and that you will trust us to be part of your team. Because when the right people with the right technology come together, magic happens.”

The Plenary Session

The Plenary Session

Pervasive Sensing
The Chief Strategic Officer of Emerson, Peter Zornio, can always be relied upon to give an interesting presentation and this year proved no different. He spoke about the expansion of the Emerson offering from being merely process control towards an all-embracing monitoring of the entire operation, whether in the process area or in the peripheral areas within and without the premises. He introduced us to the iOps concept – Integrated Operations. As technology has developed so has it been possible to see what is happening in all areas of the plant – in real time. It calls for a clear, up-to-date view of what’s happening in all aspects of an operation. This assists in more efficiency, increased staff effectiveness and therefore more productivity. By using what they have named Pervasive Sensing they have adopted a policy based on the axiom “You can’t improve what you don’t know!” With this philosophy it is possible to prevent problems rather than react to them.

The iOps centre during a demonstration.

The iOps centre during a demonstration.

Later we had the opportunity to visit the iOPs facility set up on the Exchange exhibition floor where demonstrations were a big attraction.

Think for change
An entertaining keynote was given by Dave Beckman, a former marketing executive with Emerson and who now spends his “retirement” as a speaker to the process industry. He advocated thinking outside the box,not to be afraid to be on the edge. He also was optimistic for the future as countries suddenly realised that they ought to rely on their own resources.

Emerson Exchange Daily

31 Mar {+} 1 Apl {+} 2 Apl {+} 3 AplReleases at the event!

+ Asset management software update reduces fieldbus device commissioning time by up to 80%

+ Pervasive Sensing will more than double the existing measuring market!

+ Wireless condition monitoring and prediction system reduces plant downtime and maintenance costs on Teeside!

+ Wireless improves leak detection maintaining regulatory compliance & enhance safety

+ Air cooled heat exchanger monitoring solution!

+ Cooling tower monitoring ensures cooling water availability, quality reducing chemical costs!

+ Dealing with dull, distant, dirty and dangerous locations!(iOps)


This is a nice 3min video from Nicolas Menet from the event entitled, “Final Control Valve Solution”

He cited the example of the United States which has changed almost beyond recognition. This has largely been the result of the technology which allows the extraction of shale gas. It has changed everything! Suddenly this huge country is again self sufficient in fuel. This is going to happen elsewhere too as the political situation changes due to economic circumstances. And things are changing to make previously unthinkable policies suddenly acceptable. Witness the effect of the Fukashima disaster! All nuclear power stationa are now being closed down in Japan and in Germany. What are these great countries to do for energy?

Keeping up!
In some way it may be said that a person who attends one of these multi-thread conferences has a disadvantage over the person who is sitting at his desk following things on twitter. I did attend one or two of the sessions as well as the afternoon press conference at which details of new products and applications were given. Links to these may be found in the box.

The Exchange daily news was emailed to all who requested it on each evening and these gave an excellent resume of events.

But of course nothing can compare with the networking at these events. Now in the age of social-media, one knows a lot of people without ever meeting them. Conferences like this are an opportunity of meeting people whose tweets or contributions other social networking platforms you have been followed. This was no exception and besides meeting many European and American press people like Keith Larson of Control, Nick Denbow of Industrial Automation Insider and John McKenna of Process Engineering. We also had the chance to meet the very active, possibly the most active in automation, Emerson Twitter cluster including Jim Cahill, Chris Amstutz, Nick Taylor and, for the first time, Mike Boudreaux.

Social aspect
There was a social aspect to this as well and many hostelries in the city benefitted from delegates sampling Schwaebish cuisine. This correspondent and his companions for the evening couldn’t have had more praise for the Stuttgarter Staeffele – (Your restaurant for Swabian specialties!). German food has an ill-deserved reputation for being somewhat stodgy but a visit to this 40 year old restaurant will, without doubt, change any such preconceptions.

There was also a group event which was a visit to the Porsche museum to tittalate the little boy in many as they drooled enviously over these glorious machines made with such precision and care. There are over eighty vehicles on display. We are not sure how many orders were placed as a result of this visit!

• The next Emerson Exchange Users Exchange is scheduled for the Americas. It will be held in Orlando, (FL USA) from 6th to the 10th of October 2014. Maybe you’ll be there.


“Breaking new ground with a world first for level detection technology” #PAuto

07/02/2014

VEGA has re-engineered this technology, bringing it up to date and developing a sensor for extreme situations: the vibrating level switch VEGASWING 66. Why these new sensors ‘feel comfortable’ in temperatures up to 450 °C and pressures up to 160 bar is explained to us in an interview with Holger Sack, Head of Product Management at VEGA.

DE-Sack-HolgerHolger Sack is head of product management at VEGA Grieshaber KG in Schiltach. After completing his engineering studies, he moved from Berlin to the Black Forest in 1991 to collaborate in the development of sensors for non-contact level measurement at VEGA. In 2000 he became product manager for radar, since 2009 he has been head of product management. His areas of responsibility, shared by his team of 11 product managers, are supporting product development and overseeing the worldwide marketing of our instrumentation.
The term ‘limit switch’ appears rather infrequently in technical texts. Even my Google search was not very successful for that term. Why?

Holger Sack: Today, the old, ‘tried and tested’ analogue limit switches with potentiometer adjustment etc. are gradually being replaced by digital technology. I think that’s why these devices are now more commonly called ‘point level sensors.’ Even in the English language, you’ll more often hear people talking about ‘point level measurement’, i.e. detection of a substance at a specific point. I suppose ‘point level’ has prevailed over ‘limit level’ for that reason. We’ve found that point level measurement is indeed very closely related to level measurement.

That is very likely the reason why ‘level’ is used in some descriptions as a synonym for ‘point level.’ To what extent are the two technologies different, and what are their similarities?
Holger Sack: Level measurement is used to describe continuous measurement of a changing level, whereas point level is used to indicate a discrete condition, i.e. the existence of the level at a certain point. To clarify, ‘Level’ means the continuous measurement of contents from empty to full, with the values being output in percent, volume or other units of contents. ‘Point level’, on the other hand, means a discrete on/off signal given when a product has reached a significant level in a vessel.

Continuous or discrete – can the two areas of applications be clearly separated from one another?

Holger Sack: No, they can’t. You can find both level and point level sensors everywhere. Even combined in one application, depending on the customer requirement. Usually, when both sensor types are installed, it is to increase safety – for example in the chemical industry.

Does the simpler technology behind point level switches mean that they are cheaper than continuous level sensors?

Holger Sack: Roughly speaking, yes. Because, continuous level sensors are more complex in structure and sometimes also in terms of technology. But this need not always be the case. You see, with regard to the process, point level sensors have to meet the same requirements as continuous level sensors. Level switches just carry out a ‘simpler evaluation’ of level data. That’s why the price of a level switch, or point level sensor, is usually less than that of a continuous level sensor by a certain factor.

In point level detection, a switching command starts or stops the filling equipment. How do you monitor the process, i.e. ensure that the sensing element and the electronics are working properly?

Holger Sack: On the one hand, the individual sensor has to be considered, and on the other, the entire measurement chain. In the modern sensors, microprocessor technology enables numerous functions that monitor the electronics as well as the sensing element during operation. A high percentage of faults in the electronics as well as in the sensing element, such as build-up or corrosion, can be detected and reported. Looking at the entire measurement chain, we see that information on tank contents is forwarded to the control system or special actuators through cables or bus systems. These systems are responsible for ensuring that valves, pumps, etc. operate at the right time. Until now, all devices in a system were analysed individually from safety-engineering standpoint. But this has changed. Today, engineers look at the entire measurement chain, that is, from the sensor to the transmission of measured values to the actuating components (valves, pumps, etc.). This ultimately ensures that the switch-off mechanism in its entirety works, preventing overfilling or dry running of pumps.

When it comes to safety, a lot has been done in recent years. Has level switch technology also been made better, safer?

Holger Sack: As I said earlier, the basic technology is very old. People built level switches long before they started building continuous level measuring instruments. For that reason there are still a lot of old but proven technologies in service, such as floats or paddle switches. The capacitive measuring principle is also a very old, tried-and-true measuring method, albeit with a few limitations when compared to the vibration principle. Next to microwave/radar, vibration is currently the most universal measuring principle that we offer. We at VEGA have been focusing on electronic measuring systems for years, because they have significant advantages in terms of maintenance and means Life Cycle Costs. That’s why, although they are also a little more expensive to produce and to buy, we believe that this extra outlay pays off over a service life of 15 years or more.

Does this mean that your new vibrating level switch VEGASWING 66 is just old, well-known technology in a new guise?

Holger Sack: No, not in this regard. Here we are breaking new ground with our new, patented technology. The backstory is that this instrument can be used in temperature and pressure ranges where previously only a few technologies could be deployed, and certainly not the tuning fork measuring principle. The basis of this technology is a tuning fork that is electrically excited and made to vibrate over a few micrometres range. Until now, it was not possible to use vibration technology in temperatures above 250 °C. With our VEGASWING 66, applications up to 450 °C are now possible; not only that, it is also capable of temperatures as low as -195 °C. We are the only company that can offer this technology for use in such temperatures and in pressures from -1 to 160 bar.

Vegaswing 66

Vegaswing 66

How did you make it possible to use the switch in the extreme temperatures and pressures commonly found in the process industry?

Holger Sack: For one thing, we replaced the previously used piezoelectric drive with a special solenoid that we developed ourselves. This solenoid now drives the tuning fork and is able to withstand the high temperatures. Another point is, we now use ceramic materials and have designed the electrical connections made so secure that they operate reliably even at 450° C. And last but not least, we achieved the high pressure resistance through the mechanical stability of robust materials that withstand pressures up to 160 bar.

For point level detection, the user can choose between different measuring principles. How can the customer be sure he gets the right one, the one he really needs for his application?

Holger Sack: It is always important that the customer tells us in advance what his requirements and application conditions are. Because, with this information we can recommend the right measuring principle. However, we are confronted again and again with new challenges that challenge the limits of our technology – because our customers are not standing still, they’re continuously developing their processes. In most cases it’s about new combinations of pressure, temperature and chemicals. That’s why we’re constantly developing and improving our products and measuring principles, optimising them to meet the latest process requirements.

Current problems are, for example, difficult product properties or foaming. To what extent do these factors influence the quality of the measuring results?

Holger Sack: On VEGASWING 66, for example, we can detect build-up, and we can also detect whether the tuning fork is corroded or broken. This is possible both due to the measuring principle itself, as well as monitoring of the natural resonant frequency. Build up changes the amplitude of the oscillation, which allows us to use the available processor technology to electronically evaluate this change and notify the customer that a problem exists. Such ‘anticipatory’ diagnostic capabilities are being demanded by customers more and more.

In addition to diagnostic capabilities and safety, users nowadays are calling for the simplest possible instrument handling. Do your level switches also follow the motto of the plics platform, ‘simpler is better’?

Holger Sack: Absolutely. The whole idea of the plics® concept is to make level and pressure measurement as simple as possible for each and every customer. The customer doesn’t have to be an instrument engineer to be able to use our instruments. His job is to control the process and keep it running smoothly – by asking questions about his process and its requirements, we are able to recommend the instrument that is best suited for the application. VEGASWING 66 is also designed according to the modular instrument platform plics. This means that the customer can combine different components as required. But plics is more than that: it’s a system designed to make handling easier for the customer throughout the entire life cycle of the instrument.

Another important point is delivery time. We deliver 80 percent of our products are despatched within two to four working days – previously it took 6 to 10 weeks. The installation and setup are also greatly simplified by the modular system because, if the customer already knows how to operate one VEGA instrument, he can operate all the others just as well. Installation, adjustment and connection are completely standardized, this applies to 80 percent of our instruments. If servicing is required, our employees look after customers personally and make sure the job gets done quickly and without any fuss – because, every servicing event also provides us with valuable feedback on the product and a chance to improve it and ourselves.


Phones, tablets and sensors!

11/12/2013

Product innovation and competitive pricing are key factors for success

The rapid proliferation of smart phones and tablets has caused the global magnetic sensors market to boom. This growth curve will continue as declining price points make magnetic sensors affordable for mass-market penetration.

New analysis from Frost & Sullivan, Analysis of the Global Magnetic Sensors Market, finds that the market earned revenues of  €1.20 billion (US$1.66b) in 2012 and estimates this to reach €2.56 billion (US$3.51b) in 2019. The study also outlines the prospective areas of growth globally, end user- and application-wise.

smart-phones-and-tabletsAnalysis of the Global Magnetic Sensors Market is part of the Sensors & Instrumentation Growth Partnership Service program. Frost & Sullivan’s related research services include: Global Temperature Sensors and Transmitters Market, Sensors in Laptop, Tablet, and Smartphone Global Markets, Global Sensor Outlook 2013, and Chinese Markets for Sensor Contract Manufacturing and Exports. All research services included in subscriptions provide detailed market opportunities and industry trends evaluated following extensive interviews with market participants.

With navigation emerging as a must-have feature in smartphones and cellular handsets, the need for digital compasses has spurred the global magnetic sensors market.

“Moreover, the mandatory fitment of magnetic sensors in vehicles due to regulations from the automotive sector has fuelled sale volumes,” said Frost & Sullivan Measurement and Instrumentation Senior Industry Analyst V Sankaranarayanan. “Opportunities for magnetic sensor vendors in the automotive industry will continue to open up as new applications emerge.”

However, this immense potential may not translate into equivalent revenues as intense competition leads to pricing pressures. Manufacturers are reducing prices to penetrate markets such as consumer electronics, where a compelling price point is crucial for success. Profits are also affected as automotive manufacturers apply downward price pressure on sensor manufacturers.

To counter these challenges, innovative product differentiation strategies are necessary. Products must move from competing purely on price to non-price factors, especially as customers look for unique solutions with tangible benefits.

“Manufacturers are investing in technological advancements and the widening of magnetic sensor application areas,” noted Sankaranarayanan. “Magnetic sensors have already evolved greatly in terms of sensitivity, size, packaging and flexibility. Miniaturisation, in particular, will be a common trend in the global magnetic sensors market.”

Demand from Asia-Pacific and Latin America is likely to push technology and product development further.


The Gasmet story …from an academic idea to a global business

09/08/2013
Dr Petri Jaakkola

Dr Petri Jaakkola

In this article, Dr Petri Jaakkola, founder and Chairman of Gasmet Technologies Oy explains how an idea shared by a group of researchers at the University of Oulu in Finland, during the early 1970s, developed into one of the world’s leading gas monitoring instrumentation manufacturers.

Gasmet Technologies is a leading manufacturer of gas monitoring instruments and systems for industrial and environmental applications including Continuous Emissions Monitoring (Power Plants, Waste Incinerators, Cement Kilns etc.) Stack Testing / Comparison Measurements, Process Control, Industrial Hygiene / Indoor Air Quality, Engine Exhaust Gas, Semiconductor Manufacturing, Emergency / First Response Measurement (HAZMAT), Greenhouse Gas Monitoring, Carbon Capture, Fire Testing Emissions Monitoring and Research.
Gasmet FTIR gas analyzers can perform simultaneous measurement of both organic and inorganic compounds in even the most demanding applications including hot, wet and corrosive gas streams. Concentrations of up to 50 different compounds can be measured within seconds.

Early history – technology development.
At first, the Finnish researchers understood that the prospect of being able to measure multiple gases simultaneously was very exciting, but at the time it was difficult to identify the best market for the technology to address. Initially the high resolution FTIR technology developed in the University was only used for laboratory research applications. Environmental legislation was only in its formative stages, but conscious of a growing desire to protect air quality, the researchers felt that the long-term prospects for the technology were sound.

Using FTIR (Fourier Transform InfraRed) analysis, the workers had shown that it was possible to collect a complete infrared spectrum (a measurement of the infrared light absorbed by molecules inside the sample gas cell) for gases, and from this it was possible to generate both qualitative and quantitative data for the measured gas.

Commercialisation
The first commercial partner was the company Scanoptics Oy, which worked on a high resolution FTIR spectrometer for the laboratory market and succeeded in selling two units to Finnish Universities in the early 1980’s. Since this business approach did not prove to be successful, the company changed its focus to develop a low resolution FTIR spectrometer for industrial applications and developed the initial prototype in the late 1980’s.

It is important to note that FTIR was also being developed elsewhere for use in the laboratory for qualitative analysis of liquids and solids. Crucially, if Scanoptics had chosen this market in the early years, the technology would have been unlikely to be suitable for emissions monitoring (which became the main market for Gasmet’s FTIR) because sufficient emphasis would not have been given to the ruggedness of the technology to withstand demanding industrial conditions.

However, since 1959 in Finland, it has been compulsory to include a shelter in any building over a certain size. Naturally, the quality of air inside these shelters is a primary concern, so Finntemet Oy, a Finnish manufacturer of shelters and blast resistant and gastight doors, was interested in gas analysis, and in 1990 they acquired Scanoptics’ FTIR business. This soon led to the creation of Temet Instruments Oy, which at that stage consisted of just four scientists; one working on electronics, one on the optical components, one on the mechanical design and one on software. At that time, there were no commercial or business development staff, so the focus was solely on the development of the technology.

The first Gasmet FTIR gas analyser was sold in 1993 – its serial number was #9301, and it was used successfully until around 2005. Long-term reliable service was a key objective for the Temet FTIR instruments and for this reason most of the company’s early years were spent improving the technology. This naturally created financial pressure, but the investment proved worthwhile as new environmental legislation created a heavy demand for emissions monitoring equipment.

The growth of FTIR
In the United States, the 1990 amendments to the Clean Air Act addressed toxic air pollution and established a national permits program for stationary sources, and increased enforcement authority. As a result, the USA was initially the largest market for emissions monitoring equipment. However, in the early days, the reputation of FTIR was tarnished by companies that tried to adapt high-resolution laboratory FTIR for emissions monitoring applications. As a result, for early adopters, it was necessary for the Temet FTIR to be installed in customers’ processes so that they could see the flexibility and reliability for themselves.

International performance certification schemes have been extremely influential in building confidence in FTIR and in the growth of the Gasmet business. However, certification by organisations such as TÜV in Germany and MCERTS in the UK, is a costly and time-consuming process. Nevertheless, environmental regulations around the world have increasingly required monitoring equipment to be certified and this has been a great benefit to Gasmet.

In addition to a reliance on the development of environmental legislation, it was also necessary to overcome market resistance to multicomponent analysers. In the 1990s process managers with a regulatory requirement to monitor a small number of specific gases preferred to buy individual analysers for each gas and if the number of gases was relatively low, this was generally less costly than a multi-component FTIR analyser. However, the operators of FTIR analysers were able to demonstrate a number of important advantages. Firstly, they were able to measure an almost limitless number of other chemical compounds that helped them to better manage their processes. Secondly, as legislation developed, it became necessary to measure new compounds for compliance purposes, and this was simple and cost-free for the users of FTIR, whereas those with single-gas analysers needed to purchase new hardware.

Many factors affect the choice of analyser, but the regulatory requirement is of course the most significant. A coal fired power station for example, may only be required to monitor SO2, NOx and CO emissions, whereas a municipal waste incineration plant will have to monitor other parameters such as organic compounds, HCl, HF and dioxins and heavy metals etc.

FTIR is ideal for process operators that need to:
1) Analyse multiple components, or
2) Analyse hot/wet gas
3) Analyse any gas in complicated gas mixtures

Management Buyout
In the early 2000s, demand for the company’s products grew very quickly requiring high levels of investment. This led to a management buyout in 2005 which resulted in the formation of Gasmet Technologies Oy. By that time, all of the company’s research, development, manufacturing and head office operations had been brought into one facility in Helsinki. Sales and service activities were undertaken by a global network of distributors and subsidiary offices in Hong Kong (2005), Canada (2009), and in Germany (2013).

The strategy of keeping all major functions in one facility was given a high level of priority because it enabled Gasmet to control the quality of key components such as the FTIR’s interferometer and also because it ensured that a high level of expertise was available before and after sales.

New Technologies
FTIR remains the most important analytical technology employed by Gasmet. However, until 2004 all of the analysers functioned by extracting a representative sample from a process or emission stream. At this time, the world’s first in-situ FTIR gas analyser was launched.

Portable Ambient FTIR System

Portable Ambient FTIR Analyser

Later, in 2008, Gasmet launched the world’s first portable ambient FTIR analyser, the DX-4030, capable of analysing large numbers of compounds simultaneously. This instrument brought Gasmet into many new monitoring applications; helping users to identify and measure almost any gas. At the time of writing (July 2013) the latest version, the DX-4040 remains unique and has been employed in occupational safety, incident response, Hazmat, chemical spill and fire investigations, shipping container testing, anaesthetic gas detection, greenhouse gas research and many others.

In 2013, Gasmet launched a new continuous mercury monitor (CMM). Coinciding with a new global treaty to reduce Mercury emissions, the new CMM could not have been better timed. Mercury is recognised as a chemical of global concern due to its long-range transport in the atmosphere, its persistence in the environment, its toxicity, its ability to bio-accumulate in ecosystems and its significant negative effect on human health. The CMM employs cold vapour atomic fluorescence (CVAF) to deliver very low detection limits at a significantly lower cost than other comparable mercury monitoring instruments.

Why has Gasmet been successful in the global market?
Gasmet has diversified significantly since its inception, which has helped to reduce business risk. However, emissions monitoring remains the largest application, and this is important because this presents challenging conditions for high-tech instruments, particularly since they are expected to run all day, every day, so it is extremely important that the technology is robust and very reliable. Typically, Gasmet’s analysers last from ten to fifteen years, significantly out-performing the computers that are employed to run them.

Every Gasmet customer is different, which means that almost every analyser is unique. Therefore, Gasmet and its distributors have invested heavily in technical support so that customers receive bespoke monitoring systems, tailored to meet their specific needs. The company’s philosophy is to sell solutions, not just instruments.

By manufacturing in-house Gasmet maintains a firm control not just over the quality of the products, but also the costs because there are no extra margins for outsourced sub-contract manufacturers. The quality of the products is further reinforced by the investment that has been made in performance verification/certification.

Finally, given that environmental legislation was only in its very formative stages, it is astonishing that from the results of the fundamental research work performed at the University of Oulu, two decades later Temet was able to build a business around it, and that the researchers’ foresight would lead to the creation of one of the world’s leading manufacturers of environmental monitoring instrumentation.

It is fortunate that the workers in Scanoptics chose to develop an analyser that would be ideal for continuous emissions monitoring. However, the definition of luck is: ‘preparation meeting opportunity’ and that is what happened with Gasmet’s FTIR and global environmental legislation.