Is AI all it is cracked up to be?

28/03/2017
In this article, Stephen Parker, CEO of Parker Software, examines whether artificial intelligence is all it’s cracked up to be.

If planet Earth had been created one year ago, the human species would be just ten minutes old. Putting this into context, the industrial era would have kick-started a mere two seconds ago. Thanks to human influence, the pace of technological advancement on Earth is astonishing. However, we are already on the verge of the next change. The potential of artificial intelligence has been discussed by scientists since the 1950s and modern technological advances are finally bringing this technology to the masses. 

Research suggests that artificial intelligence could be as ‘smart’ as human beings within the next century. Originally, human programmers were required to handcraft knowledge items painstakingly. Today, however, one-off algorithms can teach machines to take on and develop knowledge automatically, in the same way a human infant would. Artificial intelligence has reached a critical tipping point and its power is set to impact every business, in every industry sector.

Already, 38 per cent of enterprises are using artificial intelligence in their business operations and this figure is set to grow to 62 per cent by 2018. In fact, according to predictions by Forrester, investments in artificial intelligence technology will increase three-fold in 2017. These figures mean that the market could be worth an estimated $47 billion by 2020. 

Intelligent assistance
One of the most notable applications of AI from the past few years is the creation of intelligent assistants. Intelligent assistants are interactive systems that can communicate with humans to help them access information or complete tasks. This is usually accomplished with speech recognition technology; think Apple’s Siri, Microsoft’s Cortana or Amazon’s Alexa. Most of the intelligent assistants that we are familiar with today are consumer facing and are somewhat general in the tasks they can complete. However, these applications are now making their way into more advanced customer service settings.

While there is certainly a space for these automated assistants in the enterprise realm, there is a debate as to whether this technology could fully replace a contact centre agent.

Automation is widely recognised as a valuable tool for organisations to route the customer to the correct agent. However, completely handing over the reins of customer management to a machine could to be a step too far for most businesses. Even the most advanced AI platforms only hold an IQ score equivalent to that of a four-year-old, and naturally, businesses are unlikely to entrust their customer service offering to a child.

The human touch
Automated processes are invaluable for speeding up laborious processes and completing monotonous customer service tasks. But as any customer service expert will tell you, the human touch is what elevates good service to an excellent experience for the customer. Simple tasks will no doubt be increasingly managed and completed using automation and AI-enabled agent support systems, whereas complex issues will still require the careful intervention of a human agent.

During a TED Talk on artificial intelligence, philosopher and technologist Nick Bostrom claimed that “machine intelligence is the last invention that humanity will ever need to make.” However, contact centre agents needn’t hang up their headsets just yet.  Artificial intelligence won’t be replacing the call centre agent any time soon. The only guarantee is that the role of a call centre agent will continue to evolve after all, the industrial revolution was only two seconds ago.

@ParkerSoftware #PAuto

Cybersecurity pitfalls!

09/03/2017

Jonathan Wilkins, marketing director of obsolete industrial parts supplier, EU Automation discusses three cyber security pitfalls that industry should prepare for – the weaponisation of everyday devices, older attacks, such as Heartbleed and Shellshock and vulnerabilities in industrial control systems.

IBM X-Force® Research
2016 Cyber Security Intelligence Index

In 2016, IBM reported that manufacturing was the second most cyber-attacked industry. With new strains of ransomware and other vulnerabilities created every week, what should manufacturers look out for in new year?

‘Weaponisation’ of everyday devices
The advantages of accessing data from smart devices include condition monitoring, predictive analytics and predictive maintenance, all of which can save manufacturers money.

However, recent attacks proved that these connected devices can quickly become weapons, programmed to attack the heart of any business and shut down facilities. In a recent distributed denial of service (DDOS) attack, everyday devices were used to bring down some of the most visited websites in the world, including Twitter, Reddit and AirBNB.

Such incidents raise a clear alarm signal that manufacturers should run their production line on a separate, highly secure network. For manufacturers that use connected devices, cyber security is even more important, so they should conduct regular cyber security audits and ensure security protocols are in place and up-to-date.

Don’t forget the oldies
According to the 2016 Manufacturing Report, manufacturers are more susceptible to older attacks, such as Heartbleed and Shellshock. These are serious vulnerabilities found in the OpenSSL cryptographic that allows attackers to eavesdrop on communications and steal data directly from users.

Industrial computer systems generally aren’t updated or replaced as often as consumer technology, which means that some still have the original OpenSSL software installed. A fixed version of the programme has since been released, meaning that manufacturers can avoid this type of attack by simply updating their system.

Keeping industrial control
Manufacturers understand the need to protect their networks and corporate systems from attacks, but their industrial control systems also pose a risk. If an attacker deploys ransomware to lock down manufacturing computers, it could cause long periods of downtime, loss of production and scrap of products that are being made when the attack happens.

This is particularly true in the era of Industry 4.0, where devices are connected and processes are automated. One of the most effective means of safeguarding automated production systems is cell protection. This form of defence is especially effective against man-in-the-middle attacks, whereby the attacker has the ability to monitor, alter and inject messages in a communications system.

In its report, IBM also stated that cyber security awareness in the manufacturing industry is lower than other sectors. The truth is that any company can be the target of a cyber attack. The only way to avoid a cyber security breach is by planning ahead and preparing for the unexpected.

#PAuto @StoneJunctionPR @IBMSecurity

Communication analysis: Industrial Ethernet & Wireless v Fieldbus.

06/03/2017

Industrial Ethernet and Wireless growth is accelerated by the increasing need for industrial devices to get connected and the Industrial Internet of Things. This is the main finding of HMS Industrial Networks’ annual study of the industrial network market. Industrial Ethernet now accounts for 46% of the market (38 last year). Wireless technologies are also coming on strong, now at 6% (4) market share. Combined, industrial Ethernet and Wireless now account for 52% of the market, while fieldbuses are at 48%.

Fieldbus vs. industrial Ethernet and wireless
HMS’s estimation for 2017 based on number of new installed nodes in 2016 within Factory Automation. The estimation is based on several market studies and HMS’s own sales statistics

HMS Industrial Networks now presents their annual analysis of the industrial network market, which focuses on new installed nodes within factory automation globally. As an independent supplier of products and services for industrial communication and the Internet of Things, HMS has a substantial insight into the industrial network market. Here are some of the trends they see within industrial communication in 2017.

network-shares-according-to-hms-2017-jpg_ico500
Industrial Internet of Things is boosting Industrial Ethernet growth
According to HMS, industrial Ethernet is growing faster than previous years, with a growth rate of 22%. Industrial Ethernet now makes up for 46% of the global market compared to 38% last year. EtherNet/IP and PROFINET are tied at first place, with PROFINET dominating in Central Europe, and EtherNet/IP leading in North America. Runners-up globally are EtherCAT, Modbus-TCP and Ethernet POWERLINK.

Anders Hanson

Anders Hanson

“We definitely see an accelerated transition towards various industrial Ethernet networks when it comes to new installed nodes,” says Anders Hansson, Marketing Director at HMS. “The transition to industrial Ethernet is driven by the need for high performance, integration between factory installations and IT-systems, as well as the Industrial Internet of Things in general.”

Wireless is redefining the networking picture
Wireless technologies are growing quickly by 32% and now accounts for 6% of the total market. Within Wireless, WLAN is the most popular technology, followed by Bluetooth. “Wireless is increasingly being used by machine builders to realize innovative automation architectures and new solutions for connectivity and control, including Bring Your Own Device (BYOD) solutions via tablets or smartphones,” says Anders Hansson.

Fieldbus is still growing, but the growth is slowing down
Fieldbuses are still the most widely used type of networks with 48% of the market. Fieldbuses are still growing as many users ask for the traditional simplicity and reliability offered by fieldbuses, but the growth rate is slowing down, currently at around 4% compared to 7% last year. The dominant fieldbus is PROFIBUS with 14% of the total world market, followed by Modbus-RTU and CC-Link, both at 6%.

Regional facts
In Europe and the Middle East, PROFIBUS is still the leading network while PROFINET has the fastest growth rate. Runners up are EtherCAT, Modbus-TCP and Ethernet POWERLINK.
The US market is dominated by the CIP networks where EtherNet/IP has overtaken DeviceNet in terms of market shares.
In Asia, a fragmented network market is very visible. No network stands out as truly market-leading, but PROFIBUS, PROFINET, EtherNet/IP, Modbus and CC-Link are widely used. EtherCAT continues to establish itself as a significant network, and CC-Link IE Field is also gaining traction.

More and more devices are getting connected
“The presented figures represent our consolidated view, taking into account insights from colleagues in the industry, our own sales statistics and overall perception of the market,” says Anders Hansson. “It is interesting to see that industrial Ethernet and Wireless combined now account for more than half of the market at 52%, compared to fieldbuses at 48%. The success of a series of industrial Ethernet networks and the addition of growing Wireless technologies confirms that the network market remains fragmented, as users continue to ask for connectivity to a variety of fieldbus, industrial Ethernet and wireless networks. All in all, industrial devices are getting increasingly connected, boosted by trends such as Industrial Internet of Things and Industry 4.0. From our point of view, we are well-suited to grow with these trends, since HMS is all about ‘Connecting Devices.’”

 @HMSAnybus #PAuto #IoT

Cybersecurity at the heart of the Fourth Industrial Revolution.

08/02/2017
Ray Dooley, Product Manager Industrial Control at Schneider Electric Ireland examines the importance of maintaining security as we progress through Industry 4.o.
Ray Dooley, Schneider Electric Ireland

Ray Dooley, Schneider Electric Ireland

A technical evolution has taken place, which has made cyber threats more potent than at any other time in our history. As businesses seek to embrace Industry 4.0, cybersecurity protection must be a top priority for Industrial Control Systems (ICS). These attacks are financially crippling, reduce production and business innovation, and cost lives.

In years gone by, legacy ICS were developed with proprietary technology and were isolated from the outside world, so physical perimeter security was deemed adequate and cyber security was not relevant. However, today the rise of digital manufacturing means many control systems use open or standardised technologies to both reduce costs and improve performance, employing direct communications between control and business systems. Companies must now be proactive to secure their systems online as well as offline.

This exposes vulnerabilities previously thought to affect only office and business computers, so cyber attacks now come from both inside and outside of the industrial control system network. The problem here is that a successful cyber attack on the ICS domain can have a fundamentally more severe impact than a similar incident in the IT domain.

The proliferation of cyber threats has prompted asset owners in industrial environments to search for security solutions that can protect their assets and prevent potentially significant monetary loss and brand erosion. While some industries, such as financial services, have made progress in minimising the risk of cyber attacks, the barriers to improving cybersecurity remain high. More open and collaborative networks have made systems more vulnerable to attack. Furthermore, end user awareness and appreciation of the level of risk is inadequate across most industries outside critical infrastructure environments.

Uncertainty in the regulatory landscape also remains a significant restraint. With the increased use of commercial off-the-shelf IT solutions in industrial environments, control system availability is vulnerable to malware targeted at commercial systems. Inadequate expertise in industrial IT networks is a sector-wide challenge. Against this backdrop, organisations need to partner with a solutions provider who understands the unique characteristics and challenges of the industrial environment and is committed to security.

Assess the risks
A Defence-in-Depth approach is recommended. This starts with risk assessment – the process of analysing and documenting the environment and related systems to identify, and prioritise potential threats. The assessment examines the possible threats from internal sources, such as disgruntled employees and contractors and external sources such as hackers and vandals. It also examines the potential threats to continuity of operation and assesses the value and vulnerability of assets such as proprietary recipes and other intellectual properties, processes, and financial data. Organisations can use the outcome of this assessment to prioritise cybersecurity resource investments.

Develop a security plan
Existing security products and technologies can only go part way to securing an automation solution. They must be deployed in conjunction with a security plan. A well designed security plan coupled with diligent maintenance and oversight is essential to securing modern automation systems and networks. As the cybersecurity landscape evolves, users should continuously reassess their security policies and revisit the defence-in-depth approach to mitigate against any future attacks. Cyber attacks on critical manufacturers in the US alone have increased by 20 per cent, so it’s imperative that security plans are up to date.

Upskilling the workforce
There are increasingly fewer skilled operators in today’s plants, as the older, expert workforce moves into retirement. So the Fourth Industrial Revolution presents a golden opportunity for manufacturing to bridge the gap and bolster the workforce, putting real-time status and diagnostic information at their disposal. At the same time, however, this workforce needs to be raised with the cybersecurity know-how to cope with modern threats.

In this regard, training is crucial to any defence-in-depth campaign and the development of a security conscious culture. There are two phases to such a programme: raising general awareness of policy and procedure, and job-specific classes. Both should be ongoing with update sessions given regularly, only then will employees and organisations see the benefit.

Global industry is well on the road to a game-changing Fourth Industrial Revolution. It is not some hyped up notion years away from reality. It’s already here and has its origins in technologies and functionalities developed by visionary automation suppliers more than 15 years ago. Improvements in efficiency and profitability, increased innovation, and better management of safety, performance and environmental impact are just some of the benefits of an Internet of Things-enabled industrial environment. However, without an effective cybersecurity programme at its heart, ICS professionals will not be able to take advantage of the new technologies at their disposal for fear of the next breach.

@SchneiderElec #Pauto #Industrie40


Systems integration for Industrie 4.0.

22/11/2016
The latest trends and challenges in systems integration.

Our world is getting smaller every day. Never before have remote locations been more accessible thanks to communications technology, smartphones and the internet. Connected devices have infiltrated every aspect of our lives, including the most traditional industry sectors. Here, Nick Boughton, sales manager of Boulting Technology, discusses the challenges connectivity poses for industry, particularly with regard to systems integration and the water industry.

boulting_industrie_4-0One question industry has been unsuccessful in answering refers to the number of connected devices that exist in the world at the moment. Gartner says that by 2020, the Internet of Things will have grown to more than 26 billion units. According to Cisco, there will be 10 billion mobile-ready devices by 2018, including machine to machine – thus exceeding the world population.

The Industrial Internet of Things

Only fifteen years ago, an industrial plant operated on three separate levels. You had the plant processes or operational technology (OT), the IT layer and in between stood the grey area of middleware – connecting management systems to the shop floor. The problem in most enterprises was that the commercial and production systems were entirely separate, often as a deliberate policy. Trying to connect them was difficult not only because of the divergence in the technology, but also the limited collaboration between different parts of the organisation. For these reasons successful implementation of middleware was rare.

Fast forward to today’s smart factory floor that uses the almost ubiquitous Ethernet to make communications as smooth as possible. Supporting the new generation of networking technologies is an increased flow of data, collected and analysed in real-time. However, data is only useful when you can decipher and display it. The next step to industry nirvana is using relevant data for better decisions and predictive analysis, in which the system itself can detect issues and recommend solutions.

Smart manufacturing is based on a common, secure network infrastructure that allows a dialogue – or even better, convergence – between operational and information technology.

The trend goes beyond the factory floor and expands to big processes like national utilities, water treatment and distribution, energy and smart grids, everything in an effort to drive better decision making, improve asset utilisation and increase process performance and productivity.

In fact, some water and energy companies are using the same approach to perform self-analysis on energy efficiency, potential weak points and the integration of legacy systems with new technologies. In a highly regulated and driven sector like utilities, maximising assets and being able to make predictions are worth a king’s ransom.

System integration challenges
System integration in this connected industry landscape comes with its challenges, so companies need to keep up to speed and get creative with technology. Keeping existing systems up to date and working properly is one of the main challenges of industry and big processes alike.

Finally, ensuring your system is secure from cyber threats and attacks is a new challenge fit for Industry 4.0. Connecting a system or equipment to a network is all fine and dandy, but it also brings vulnerabilities that weren’t there before.

Systems integrators relish a challenge and they’re very good at adapting to new technologies. For this reason, some systems integrators have started working closely with industrial automation, IT and security experts to help overcome the challenges posed by Industrie 4.0.

Regardless of whether we’re talking about companies in utilities, manufacturing or transportation, the signs are showing that companies want to get more from their existing assets and are retrofitting systems more than ever.

Of course, retrofitting isn’t always easy. In many cases, upgrading a system without shutting it down is like trying to change the brakes on a speeding bus – impossible. However, unlike the bus scenario, there is usually a solution. All you have to do is find it.

Flexibility is essential for good systems integrators. Being familiar with a wide range of systems and working with different manufacturers is the best way to maximise industry knowledge and expertise, while also keeping up to date with the latest technologies. At Boulting Technology, we partner up with market leaders like Rockwell Automation, Siemens, Mitsubishi, Schneider, ABB and others, to design and supply tailor-made systems integration solutions for a diverse range of industries, processes and platforms.

The world might be getting smaller and we might be more connected than ever before, but some things never change. Relevant experience, partnerships and the desire to innovate are as valuable as they have ever been in this connected new world of Industrie 4.0.

@BoultingTech #PAuto #IoT #Industrie4 @StoneJunctionPR

Preparing pharmaceutical and medical technology for the future.

27/09/2016

Production environment requirements in the pharmaceutical and medical technology sectors are very high and producers need to keep abreast of current industry trends. Such trends include; process optimisation for the purpose of increasing overall equipment effectiveness (OEE), effective asset life cycle management and predictive maintenance using enterprise mobility and intelligent solutions (smart apps). Increasing networking along with the use of automation technology in accordance with Industry 4.0 have paved the way for these developments.

Industry 4.0
The Internet of Things has found its way into production in the form of Industry 4.0: increasingly networked systems with more communication-capable components have meant an ever-increasing volume of data. Thanks to “big data”, production is being made more and more intelligent, with the pinnacle of achievement being the smart factory. The key to success lies in determining the right information from the mass of data available, analysing the data and drawing findings from them. The aim of such Smart Data Management is to optimise the plant in question and prepare it for the future in terms of site operational excellence.

Robots are increasingly taking on handling tasks to reduce human effort in the medical/pharma sectors, for example by supplying filled syringes to the end-of-line packaging station.

Robots are increasingly taking on handling tasks to reduce human effort in the medical/pharma sectors, for example by supplying filled syringes to the end-of-line packaging station.

In addition, overall equipment effectiveness (OEE) has developed into an obvious trend. The main factors that have contributed towards this have been optimised plant utilisation and productivity for which manufacturing execution systems (MES) and enterprise resource planning (ERP) are of vital importance. Interfaces such as the MES interface from Mitsubishi Electric enable data to be collected quickly and easily at plant level and transferred to higher-level MES or ERP systems at the control level for further analysis. OEE can be specifically optimised based on the results without the need for a gateway PC to transfer the data. Based on the System Q PLC from Mitsubishi Electric the MES interface can be configured by a plant engineer in just around 15 minutes.

Cost control strategies look for a more compact design, shorter production cycles and substantially minimised waste. Automation technologies strongly support these approaches with robot technology in particular being used to achieve these aims.

Collaboration between Robots and Humans
Today’s pharmaceutical and medical technology production environments see robots and human operators increasingly working side by side. Mitsubishi Electric’s integrated Robot Safety Solution helps manufacturers to boost productivity and lift human-machine collaboration by allowing the robot to continue operation, within tight constraints, while operators access its work cell. Safety sensing technology detects movements in two predefined zones within the operating environment of the manufacturing cell and transmits the information to the SafePlus safety system. A reduced operating speed or a movement stop is then assigned to the robot in real time, thus enabling operators to work in close proximity to the moving robot without a safety cage. As a result, humans and robots are able to work within an environment where the risk of danger is eliminated.

Robot-assisted handling solutions: compact, flexible and quick
Space is an expensive commodity, especially in cleanrooms. The manufacture and maintenance of these plants where an extremely high level of hygiene is required are extremely costly. Compact components are all the more important as ultimately, the machine needs to be space-saving. Mitsubishi Electric components such as SCARA and articulated arm robots, controllers and servo drives are characterised by their particularly space-saving design and are suitable for flexible applications even when space is restricted. Easy handling enables fast integration, commissioning and adjustment.

One example of a highly compact handling solution came from Robotronic AG. Their required a secondary packaging solution for supplying and packing filled vials of various sizes. The solution needed to be integrated in an existing system with limited available space. The modular design principle of the modular robot technology (MRT) produced by Robotronic provides excellent design flexibility. As a result, the basic module for the MRT cell has a footprint of just 1.0 x 1.30 metres and is approximately 2.20 metres high, so it also meets the minimal space requirements. The solution for the cleanroom class in accordance with GMP standard level D consists of two MRT cells, each with a compact robot from Mitsubishi Electric and a conveyor line with eight positioning screws, driven by Mitsubishi Electric servo motors. The robots place the vials in the blister packs at a processing speed of 300 units per minute.

Hygiene in cleanroom systems
The increasing use of automation technologies, especially robots, has led to an increase in the demand for systems which meet high cleanroom requirements. It is also just as important to be able to clean a plant before a production changeover without any major costs being incurred. That means that it must be possible to clean the components in place (i.e. be CIP-compatible) using aggressive chemicals like H2O2. For that reason, Mitsubishi Electric also offers its customers multi-resistant versions of its new generation of MELFA robots which have been approved for regular CIP cleaning using H2O2. MELFA robots can even meet cleanroom class requirements; ISO 3, are dust proof, and have IP67 environmental protection.

@MitsubishiFAEU #PAuto


Cloud-based sensor services.

29/05/2016
Sensors are valuable sources of information and can also be used outside of conventional machine and plant engineering to optimize processes and conserve resources.

The Internet of Things opens up new possibilities for networking even sensors spread over long distances. Sensor signals can be provided at exactly the right time in the place where the information contained in the signals can be used profitably.

For example, the detection of filling levels using modern sensor technology is possible in most cases with lesser or greater ease. Where containers are spread over long distances, however, greater cost is often involved with the transmission of sensor signals. This means automated solutions have to be disregarded and filling levels have to be monitored manually with more or less regular observations.

Unbenannt1.jpg_ico500With networking via the Internet, level data from a large number of sensors spread over long distances can be processed centrally and prepared for further processing.

Pepperl+Fuchs shows connections of sensors to various cloud platforms in a solutions park.

An application has been developed with partner connectavo which uses sensors to record the filling levels of the reservoirs of a number of filling machines in use across various production sites and manages these levels centrally.

The replenishment logistics are simplified as a result and downtimes due to a lack of materials are avoided. In addition, if the filling level falls below a critical level, a message is sent to the mobile phone of the person responsible for replenishment.

A different application has been implemented together with SAP. A sensor for type verification of light units for mobile compressors is used in this application and the data from this sensor is supplied in the cloud of an MES system that organizes the material flow for the complete assembly of the compressors.

Status data from sensors in company IT
The increase in overall equipment effectiveness (OEE) is one of the most important applications of Industry 4.0. The retrofitting of existing production systems poses major challenges for plant operators.
The application presented as a joint project by Pepperl+Fuchs, TE Connectivity, and Software AG uses hardware that can easily be retrofitted. This is based on the sensor level of the SmartBridge interface from Pepperl+Fuchs and on the control and fieldbus level of the spark device of TE Connectivity. These two data ports transmit the extracted performance data via cable or via a radio interface to the business platform of Software AG. This platform allows three important added value services within the context of Industry 4.0 through data consolidation with a downstream analysis:

1. Process optimization
Spark uses the process data from sensors and actuators from the control level and displays this on a dashboard, which also reveals less obvious delays or micro-downtimes with the help of a historical data recorder.

2. Status monitoring
A correlation of historical events with the actual machine runtimes and maintenance recommendations of the manufacturers provide a good picture of the actual (maintenance) status of the machine or plant.

3. Service on demand
Photoelectric sensors from Pepperl+Fuchs even provide information about diminishing detection capability due to soiling of the exit lens or the reflector. This information is extracted from the machine circuit with the help of the SmartBridge interface and transmitted to a service platform via an Internet gateway. The platform evaluates the status information from the sensors and, where necessary, triggers a field service application, which can be completed either by internal or external maintenance service providers.

 

 @PepperlFuchsUSA #PAuto #IoT